89 research outputs found

    Enhancement of cutaneous immunity during aging by blocking p38 mitogen-activated protein (MAP) kinase-induced inflammation

    Get PDF
    Background Immunity decreases with age, which leads to reactivation of varicella zoster virus (VZV). In human subjects age-associated immune changes are usually measured in blood leukocytes; however, this might not reflect alterations in tissue-specific immunity. Objectives We used a VZV antigen challenge system in the skin to investigate changes in tissue-specific mechanisms involved in the decreased response to this virus during aging. Methods We assessed cutaneous immunity based on the extent of erythema and induration after intradermal VZV antigen injection. We also performed immune histology and transcriptomic analyses on skin biopsy specimens taken from the challenge site in young (65 years) subjects. Results Old human subjects exhibited decreased erythema and induration, CD4+ and CD8+ T-cell infiltration, and attenuated global gene activation at the site of cutaneous VZV antigen challenge compared with young subjects. This was associated with increased sterile inflammation in the skin in the same subjects related to p38 mitogen-activated protein kinase–related proinflammatory cytokine production (P < .0007). We inhibited systemic inflammation in old subjects by means of pretreatment with an oral small-molecule p38 mitogen-activated protein kinase inhibitor (Losmapimod; GlaxoSmithKline, Brentford, United Kingdom), which reduced both serum C-reactive protein levels and peripheral blood monocyte secretion of IL-6 and TNF-Ξ±. In contrast, cutaneous responses to VZV antigen challenge were increased significantly in the same subjects (P < .0003). Conclusion Excessive inflammation in the skin early after antigen challenge retards antigen-specific immunity. However, this can be reversed by inhibition of inflammatory cytokine production that can be used to promote vaccine efficacy and the treatment of infections and malignancy during aging

    Vitamin D3 replacement enhances antigen-specific immunity in older adults

    Get PDF
    This article has been accepted for publication in Immunotherapy Advances Published by Oxford University Press

    The Characterization of Varicella Zoster Virus-Specific T Cells in Skin and Blood during Aging

    Get PDF
    Reactivation of the varicella zoster virus (VZV) increases during aging. Although the effects of VZV reactivation are observed in the skin (shingles), the number and functional capacity of cutaneous VZV-specific T cells have not been investigated. The numbers of circulating IFN-Ξ³-secreting VZV-specific CD4+ T cells are significantly decreased in old subjects. However, other measures of VZV-specific CD4+ T cells, including proliferative capacity to VZV antigen stimulation and identification of VZV-specific CD4+ T cells with an major histocompatibility complex class II tetramer (epitope of IE-63 protein), were similar in both age groups. The majority of T cells in the skin of both age groups expressed CD69, a characteristic of skin-resident T cells. VZV-specific CD4+ T cells were significantly increased in the skin compared with the blood in young and old subjects, and their function was similar in both age groups. In contrast, the number of Foxp3+ regulatory T cells and expression of the inhibitory receptor programmed cell death -1 PD-1 on CD4+ T cells were significantly increased in the skin of older humans. Therefore, VZV-specific CD4+ T cells in the skin of older individuals are functionally competent. However, their activity may be restricted by multiple inhibitory influences in situ

    Flux-Induced Vortex in Mesoscopic Superconducting Loops

    Full text link
    We predict the existence of a quantum vortex for an unusual situation. We study the order parameter in doubly connected superconducting samples embedded in a uniform magnetic field. For samples with perfect cylindrical symmetry, the order parameter has been known for long and no vortices are present in the linear regime. However, if the sample is not symmetric, there exist ranges of the field for which the order parameter vanishes along a line, parallel to the field. In many respects, the behavior of this line is qualitatively different from that of the vortices encountered in type II superconductivity. For samples with mirror symmetry, this flux-induced vortex appears at the thin side for small fluxes and at the opposite side for large fluxes. We propose direct and indirect experimental methods which could test our predictions.Comment: 6 pages, Latex, 4 figs., uses RevTex, extended to situations far from cylindrical symmetr

    The Characterization of Varicella Zoster Virus–Specific T Cells in Skin and Blood during Aging

    Get PDF
    Reactivation of the varicella zoster virus (VZV) increases during aging. Although the effects of VZV reactivation are observed in the skin (shingles), the number and functional capacity of cutaneous VZV-specific T cells have not been investigated. The numbers of circulating IFN-Ξ³-secreting VZV-specific CD4+ T cells are significantly decreased in old subjects. However, other measures of VZV-specific CD4+ T cells, including proliferative capacity to VZV antigen stimulation and identification of VZV-specific CD4+ T cells with an major histocompatibility complex class II tetramer (epitope of IE-63 protein), were similar in both age groups. The majority of T cells in the skin of both age groups expressed CD69, a characteristic of skin-resident T cells. VZV-specific CD4+ T cells were significantly increased in the skin compared with the blood in young and old subjects, and their function was similar in both age groups. In contrast, the number of Foxp3+ regulatory T cells and expression of the inhibitory receptor programmed cell death -1 PD-1 on CD4+ T cells were significantly increased in the skin of older humans. Therefore, VZV-specific CD4+ T cells in the skin of older individuals are functionally competent. However, their activity may be restricted by multiple inhibitory influences in situ

    Predicting Outcomes of Prostate Cancer Immunotherapy by Personalized Mathematical Models

    Get PDF
    Therapeutic vaccination against disseminated prostate cancer (PCa) is partially effective in some PCa patients. We hypothesized that the efficacy of treatment will be enhanced by individualized vaccination regimens tailored by simple mathematical models.We developed a general mathematical model encompassing the basic interactions of a vaccine, immune system and PCa cells, and validated it by the results of a clinical trial testing an allogeneic PCa whole-cell vaccine. For model validation in the absence of any other pertinent marker, we used the clinically measured changes in prostate-specific antigen (PSA) levels as a correlate of tumor burden. Up to 26 PSA levels measured per patient were divided into each patient's training set and his validation set. The training set, used for model personalization, contained the patient's initial sequence of PSA levels; the validation set contained his subsequent PSA data points. Personalized models were simulated to predict changes in tumor burden and PSA levels and predictions were compared to the validation set. The model accurately predicted PSA levels over the entire measured period in 12 of the 15 vaccination-responsive patients (the coefficient of determination between the predicted and observed PSA values was R(2)β€Š=β€Š0.972). The model could not account for the inconsistent changes in PSA levels in 3 of the 15 responsive patients at the end of treatment. Each validated personalized model was simulated under many hypothetical immunotherapy protocols to suggest alternative vaccination regimens. Personalized regimens predicted to enhance the effects of therapy differed among the patients.Using a few initial measurements, we constructed robust patient-specific models of PCa immunotherapy, which were retrospectively validated by clinical trial results. Our results emphasize the potential value and feasibility of individualized model-suggested immunotherapy protocols

    T Regulatory Cells Are Markers of Disease Activity in Multiple Sclerosis Patients

    Get PDF
    FoxP3+ Treg cells are believed to play a role in the occurrence of autoimmunity and in the determination of clinical recurrences. Contradictory reports are, however, available describing frequency and function of Treg cells during autoimmune diseases. We examined, by both polychromatic flow cytometry, and real-time RT-PCR, several Treg markers in peripheral blood mononuclear cells from patients with multiple sclerosis (MS), an autoimmune disease affecting the central nervous system. We found that Tregs, as defined by CD25, CD39, FoxP3, CTLA4, and GITR expression, were significantly decreased in stable MS patients as compared to healthy donors, but, surprisingly, restored to normal levels during an acute clinical attack. We conclude that Treg cells are not involved in causing clinical relapses, but rather react to inflammation in the attempt to restore homeostasis

    Cancer treatment: the combination of vaccination with other therapies

    Get PDF
    Harnessing of the immune system by the development of β€˜therapeutic’ vaccines, for the battle against cancer has been the focus of tremendous research efforts over the past two decades. As an illustration of the impressive amounts of data gathered over the past years, numerous antigens expressed on the surface of cancer cells, have been characterized. To this end, recent years research has focussed on characterization of antigens that play an important role for the growth and survival of cancer cells. Anti-apoptotic molecules like survivin that enhance the survival of cancer cells and facilitate their escape from cytotoxic therapies represent prime vaccination candidates. The characterization of a high number of tumor antigens allow the concurrent or serial immunological targeting of different proteins associated with such cancer traits. Moreover, while vaccination in itself is a promising new approach to fight cancer, the combination with additional therapy could create a number of synergistic effects. Herein we discuss the possibilities and prospects of vaccination when combined with other treatments. In this regard, cell death upon drug exposure may be immunogenic or non-immunogenic depending on the specific chemotherapeutics. Also, chemotherapy represents one of several options available for clearance of CD4+ Foxp3+ regulatory T cells. Moreover, therapies based on monoclonal antibodies may have synergistic potential in combination with vaccination, both when used for targeting of tumor cells and endothelial cells. The efficacy of therapeutic vaccination against cancer will over the next few years be studied in settings taking advantage of strategies in which vaccination is combined with other treatment modalities. These combinations should be based on current knowledge not only regarding the biology of the cancer cell per se, but also considering how treatment may influence the malignant cell population as well as the immune system

    HTLV-1 bZIP Factor Induces T-Cell Lymphoma and Systemic Inflammation In Vivo

    Get PDF
    Human T-cell leukemia virus type 1 (HTLV-1) is the causal agent of a neoplastic disease of CD4+ T cells, adult T-cell leukemia (ATL), and inflammatory diseases including HTLV-1 associated myelopathy/tropical spastic paraparesis, dermatitis, and inflammatory lung diseases. ATL cells, which constitutively express CD25, resemble CD25+CD4+ regulatory T cells (Treg). Approximately 60% of ATL cases indeed harbor leukemic cells that express FoxP3, a key transcription factor for Treg cells. HTLV-1 encodes an antisense transcript, HTLV-1 bZIP factor (HBZ), which is expressed in all ATL cases. In this study, we show that transgenic expression of HBZ in CD4+ T cells induced T-cell lymphomas and systemic inflammation in mice, resembling diseases observed in HTLV-1 infected individuals. In HBZ-transgenic mice, CD4+Foxp3+ Treg cells and effector/memory CD4+ T cells increased in vivo. As a mechanism of increased Treg cells, HBZ expression directly induced Foxp3 gene transcription in T cells. The increased CD4+Foxp3+ Treg cells in HBZ transgenic mice were functionally impaired while their proliferation was enhanced. HBZ could physically interact with Foxp3 and NFAT, thereby impairing the suppressive function of Treg cells. Thus, the expression of HBZ in CD4+ T cells is a key mechanism of HTLV-1-induced neoplastic and inflammatory diseases
    • …
    corecore