65 research outputs found

    Decidual Cell Polyploidization Necessitates Mitochondrial Activity

    Get PDF
    Cellular polyploidy has been widely reported in nature, yet its developmental mechanism and function remain poorly understood. In the present study, to better define the aspects of decidual cell polyploidy, we isolated pure polyploid and non-polyploid decidual cell populations from the in vivo decidual bed. Three independent RNA pools prepared for each population were then subjected to the Affymetrix gene chip analysis for the whole mouse genome transcripts. Our data revealed up-regulation of 1015 genes and down-regulation of 1207 genes in the polyploid populations, as compared to the non-polyploid group. Comparative RT-PCR and in situ hybridization results indeed confirmed differential expressional regulation of several genes between the two populations. Based on functional enrichment analyses, up-regulated polyploidy genes appeared to implicate several functions, which primarily include cell/nuclear division, ATP binding, metabolic process, and mitochondrial activity, whereas that of down-regulated genes primarily included apoptosis and immune processes. Further analyses of genes that are related to mitochondria and bi-nucleation showed differential and regional expression within the decidual bed, consistent with the pattern of polyploidy. Consistently, studies revealed a marked induction of mitochondrial mass and ATP production in polyploid cells. The inhibition of mitochondrial activity by various pharmacological inhibitors, as well as by gene-specific targeting using siRNA-mediated technology showed a dramatic attenuation of polyploidy and bi-nucleation development during in vitro stromal cell decidualization, suggesting mitochondria play a major role in positive regulation of decidual cell polyploidization. Collectively, analyses of unique polyploidy markers and molecular signaling networks may be useful to further characterize functional aspects of decidual cell polyploidy at the site of implantation

    The Ratio 1660/1690 cmβˆ’1 Measured by Infrared Microspectroscopy Is Not Specific of Enzymatic Collagen Cross-Links in Bone Tissue

    Get PDF
    In postmenopausal osteoporosis, an impairment in enzymatic cross-links (ECL) occurs, leading in part to a decline in bone biomechanical properties. Biochemical methods by high performance liquid chromatography (HPLC) are currently used to measure ECL. Another method has been proposed, by Fourier Transform InfraRed Imaging (FTIRI), to measure a mature PYD/immature DHLNL cross-links ratio, using the 1660/1690 cmβˆ’1 area ratio in the amide I band. However, in bone, the amide I band composition is complex (collagens, non-collagenous proteins, water vibrations) and the 1660/1690 cmβˆ’1 by FTIRI has never been directly correlated with the PYD/DHLNL by HPLC. A study design using lathyritic rats, characterized by a decrease in the formation of ECL due to the inhibition of lysyl oxidase, was used in order to determine the evolution of 1660/1690 cmβˆ’1 by FTIR Microspectroscopy in bone tissue and compare to the ECL quantified by HPLC. The actual amount of ECL was quantified by HPLC on cortical bone from control and lathyritic rats. The lathyritic group exhibited a decrease of 78% of pyridinoline content compared to the control group. The 1660/1690 cmβˆ’1 area ratio was increased within center bone compared to inner bone, and this was also correlated with an increase in both mineral maturity and mineralization index. However, no difference in the 1660/1690 cmβˆ’1 ratio was found between control and lathyritic rats. Those results were confirmed by principal component analysis performed on multispectral infrared images. In bovine bone, in which PYD was physically destructed by UV-photolysis, the PYD/DHLNL (measured by HPLC) was strongly decreased, whereas the 1660/1690 cmβˆ’1 was unmodified. In conclusion, the 1660/1690 cmβˆ’1 is not related to the PYD/DHLNL ratio, but increased with age of bone mineral, suggesting that a modification of this ratio could be mainly due to a modification of the collagen secondary structure related to the mineralization process

    Codon Size Reduction as the Origin of the Triplet Genetic Code

    Get PDF
    The genetic code appears to be optimized in its robustness to missense errors and frameshift errors. In addition, the genetic code is near-optimal in terms of its ability to carry information in addition to the sequences of encoded proteins. As evolution has no foresight, optimality of the modern genetic code suggests that it evolved from less optimal code variants. The length of codons in the genetic code is also optimal, as three is the minimal nucleotide combination that can encode the twenty standard amino acids. The apparent impossibility of transitions between codon sizes in a discontinuous manner during evolution has resulted in an unbending view that the genetic code was always triplet. Yet, recent experimental evidence on quadruplet decoding, as well as the discovery of organisms with ambiguous and dual decoding, suggest that the possibility of the evolution of triplet decoding from living systems with non-triplet decoding merits reconsideration and further exploration. To explore this possibility we designed a mathematical model of the evolution of primitive digital coding systems which can decode nucleotide sequences into protein sequences. These coding systems can evolve their nucleotide sequences via genetic events of Darwinian evolution, such as point-mutations. The replication rates of such coding systems depend on the accuracy of the generated protein sequences. Computer simulations based on our model show that decoding systems with codons of length greater than three spontaneously evolve into predominantly triplet decoding systems. Our findings suggest a plausible scenario for the evolution of the triplet genetic code in a continuous manner. This scenario suggests an explanation of how protein synthesis could be accomplished by means of long RNA-RNA interactions prior to the emergence of the complex decoding machinery, such as the ribosome, that is required for stabilization and discrimination of otherwise weak triplet codon-anticodon interactions

    The identification of proteoglycans and glycosaminoglycans in archaeological human bones and teeth

    Get PDF
    Bone tissue is mineralized dense connective tissue consisting mainly of a mineral component (hydroxyapatite) and an organic matrix comprised of collagens, non-collagenous proteins and proteoglycans (PGs). Extracellular matrix proteins and PGs bind tightly to hydroxyapatite which would protect these molecules from the destructive effects of temperature and chemical agents after death. DNA and proteins have been successfully extracted from archaeological skeletons from which valuable information has been obtained; however, to date neither PGs nor glycosaminoglycan (GAG) chains have been studied in archaeological skeletons. PGs and GAGs play a major role in bone morphogenesis, homeostasis and degenerative bone disease. The ability to isolate and characterize PG and GAG content from archaeological skeletons would unveil valuable paleontological information. We therefore optimized methods for the extraction of both PGs and GAGs from archaeological human skeleto ns. PGs and GAGs were successfully extracted from both archaeological human bones and teeth, and characterized by their electrophoretic mobility in agarose gel, degradation by specific enzymes and HPLC. The GAG populations isolated were chondroitin sulfate (CS) and hyaluronic acid (HA). In addition, a CSPG was detected. The localization of CS, HA, three small leucine rich PGs (biglycan, decorin and fibromodulin) and glypican was analyzed in archaeological human bone slices. Staining patterns were different for juvenile and adult bones, whilst adolescent bones had a similar staining pattern to adult bones. The finding that significant quantities of PGs and GAGs persist in archaeological bones and teeth opens novel venues for the field of Paleontology

    Structure of a gene encoding a cytosolic acetyl-CoA carboxylase of hexaploid wheat.

    No full text

    Properties of Sarychev sulphate aerosols over the Arctic

    Get PDF
    Aerosols from the Sarychev Peak volcano entered the Arctic region less than a week after the strongest SO2 eruption on June 15 and 16, 2009 and had, by the second week in July, spread out over the entire Arctic region. These predominantly stratospheric aerosols were determined to be sub-micron in size and inferred to be composed of sulphates produced from the condensation of SO2 gases emitted during the eruption. Average (500 nm) Sarychev-induced stratospheric optical depths over the Polar Environmental Atmospheric Research Laboratory (PEARL) at Eureka, Nunavut, Canada were found to be between 0.03 and 0.05 during the months of July and August, 2009. This estimate, derived from sunphotometry and integrated lidar backscatter profiles was consistent with averages derived from lidar estimates over Ny-Γ…lesund (Spitsbergen). The Sarychev SOD e-folding time at Eureka, deduced from lidar profiles, was found to be approximately 4 months relative to a regression start date of July 27. These profiles initially revealed the presence of multiple Sarychev plumes between the tropopause and about 17 km altitude. After about two months, the complex vertical plume structures had collapsed into fewer, more homogeneous plumes located near the tropopause. It was found that the noisy character of daytime backscatter returns induced an artifactual minimum in the temporal, pan-Arctic, CALIOP SOD response to Sarychev sulphates. A depolarization ratio discrimination criterion was used to separate the CALIOP stratospheric layer class into a low depolarization subclass which was more representative of Sarychev sulphates. Post-SAT (post Sarychev Arrival Time) retrievals of the fine mode effective radius (reff,f) and the logarithmic standard deviation for two Eureka sites and Thule, Greenland were all close to 0.25 ΞΌm and 1.6 respectively. The stratospheric analogue to the columnar reff,f average was estimated to be reff,f(+) = 0.29 ΞΌm for Eureka data. Stratospheric, Raman lidar retrievals at Ny-Γ…lesund, yielded a post-SAT average of reff,f(+) = 0.27 ΞΌm. These results are ~ 50% larger than the background stratospheric-aerosol value. They are also about a factor of two larger than modeling values used in recent publications or about a factor of five larger in terms of (per particle) backscatter cross section
    • …
    corecore