25 research outputs found

    The Werner Syndrome Helicase/Exonuclease Processes Mobile D-Loops through Branch Migration and Degradation

    Get PDF
    RecQ DNA helicases are critical for preserving genome integrity. Of the five RecQ family members identified in humans, only the Werner syndrome protein (WRN) possesses exonuclease activity. Loss of WRN causes the progeroid disorder Werner syndrome which is marked by cancer predisposition. Cellular evidence indicates that WRN disrupts potentially deleterious intermediates in homologous recombination (HR) that arise in genomic and telomeric regions during DNA replication and repair. Precisely how the WRN biochemical activities process these structures is unknown, especially since the DNA unwinding activity is poorly processive. We generated biologically relevant mobile D-loops which mimic the initial DNA strand invasion step in HR to investigate whether WRN biochemical activities can disrupt this joint molecule. We show that WRN helicase alone can promote branch migration through an 84 base pair duplex region to completely displace the invading strand from the D-loop. However, substrate processing is altered in the presence of the WRN exonuclease activity which degrades the invading strand both prior to and after release from the D-loop. Furthermore, telomeric D-loops are more refractory to disruption by WRN, which has implications for tighter regulation of D-loop processing at telomeres. Finally, we show that WRN can recognize and initiate branch migration from both the 5′ and 3′ ends of the invading strand in the D-loops. These findings led us to propose a novel model for WRN D-loop disruption. Our biochemical results offer an explanation for the cellular studies that indicate both WRN activities function in processing HR intermediates

    The Werner Syndrome Protein Suppresses Telomeric Instability Caused by Chromium (VI) Induced DNA Replication Stress

    Get PDF
    Telomeres protect the chromosome ends and consist of guanine-rich repeats coated by specialized proteins. Critically short telomeres are associated with disease, aging and cancer. Defects in telomere replication can lead to telomere loss, which can be prevented by telomerase-mediated telomere elongation or activities of the Werner syndrome helicase/exonuclease protein (WRN). Both telomerase and WRN attenuate cytotoxicity induced by the environmental carcinogen hexavalent chromium (Cr(VI)), which promotes replication stress and DNA polymerase arrest. However, it is not known whether Cr(VI)-induced replication stress impacts telomere integrity. Here we report that Cr(VI) exposure of human fibroblasts induced telomeric damage as indicated by phosphorylated H2AX (γH2AX) at telomeric foci. The induced γH2AX foci occurred in S-phase cells, which is indicative of replication fork stalling or collapse. Telomere fluorescence in situ hybridization (FISH) of metaphase chromosomes revealed that Cr(VI) exposure induced an increase in telomere loss and sister chromatid fusions that were rescued by telomerase activity. Human cells depleted for WRN protein exhibited a delayed reduction in telomeric and non-telomeric damage, indicated by γH2AX foci, during recovery from Cr(VI) exposure, consistent with WRN roles in repairing damaged replication forks. Telomere FISH of chromosome spreads revealed that WRN protects against Cr(VI)-induced telomere loss and downstream chromosome fusions, but does not prevent chromosome fusions that retain telomere sequence at the fusion point. Our studies indicate that environmentally induced replication stress leads to telomere loss and aberrations that are suppressed by telomerase-mediated telomere elongation or WRN functions in replication fork restoration

    A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors

    Get PDF
    Host proteins are essential for HIV entry and replication and can be important nonviral therapeutic targets. Large-scale RNA interference (RNAi)-based screens have identified nearly a thousand candidate host factors, but there is little agreement among studies and few factors have been validated. Here we demonstrate that a genome-wide CRISPR-based screen identifies host factors in a physiologically relevant cell system. We identify five factors, including the HIV co-receptors CD4 and CCR5, that are required for HIV infection yet are dispensable for cellular proliferation and viability. Tyrosylprotein sulfotransferase 2 (TPST2) and solute carrier family 35 member B2 (SLC35B2) function in a common pathway to sulfate CCR5 on extracellular tyrosine residues, facilitating CCR5 recognition by the HIV envelope. Activated leukocyte cell adhesion molecule (ALCAM) mediates cell aggregation, which is required for cell-to-cell HIV transmission. We validated these pathways in primary human CD4 + T cells through Cas9-mediated knockout and antibody blockade. Our findings indicate that HIV infection and replication rely on a limited set of host-dispensable genes and suggest that these pathways can be studied for therapeutic intervention

    Microgrids project, part 2: design of an electrification kit with high content of Renewable Energy Sources in Senegal

    No full text
    Senegal is one of the less developed countries in the world (position 158 in a list of 174 countries). 85% of its rural population does not have access to electricity and there's no doubt that this is an important barrier for socio-economic development. In this context, the project Microgrids aims at contributing to solve this problem. This project is part of the Intelligent Energy - Europe Programme supported by the European Commission. Its objective is the promotion and dissemination of the use of micro-grids with high content of Renewable Energy Sources (RES) for the electrification of villages far away from the grid in Senegal. One of the results of the project was the analysis of rural electrification needs, which is described in another paper [Camblong H, Sarr J, Niang AT, Curea O, Alzola JA, Sylla EH, Santos M. Microgrids project, part 1: analysis of rural electrification with high content of renewable energy sources in Senegal. Renewable Energy, submitted for publication.]. This paper presents the design of an electrification kit based on the information provided by that analysis [Analyse des besoins locaux pour l'électrification de zones rurales au Sénégal. Technical report of Microgrids project; 2007. Available from: http://www.microgrids-eie.com.]. After identifying necessary previous conditions for the sustainability of any electrification project, a methodology is proposed for the design of the electrification kit. This methodology is applied to a typical village and results are extended to differently sized villages in the areas of Thies, Fatick and Kaolack. Economic considerations are also included to establish the relationship between electrification costs and paying capability of the communities. Now the Microgrids' consortium hopes to set-up a new project to apply the designed kit on some rural non-electrified villages
    corecore