583 research outputs found

    Position-sensitive detector for the 6-meter optical telescope

    Full text link
    The Position-Sensitive Detector (PSD) for photometrical and spectral observation on the 6-meter optical telescope of the Special Astrophysical Observatory (Russia) is described. The PSD consists of a position-sensitive tube, amplifiers of output signals, analog-to-digital converters (ADC) and a digital logic plate, which produces a signal for ADC start and an external strob pulse for reading information by registration system. If necessary, the thermoelectric cooler can be used. The position-sensitive tube has the following main elements: a photocathode, electrodes of inverting optics, a block of microchannel plates (MCP) and a position-sensitive collector of quadrant type. The main parameters of the PSD are the diameter of the sensitive surface is 25 mm, the spatial resolution is better than 100 (\mu)m in the centre and a little worse on the periphery; the dead time is near 0.5 (\mu)s; the detection quantum efficiency is defined by the photocathode and it is not less than 0.1, as a rule; dark current is about hundreds of cps, or less, when cooling. PSD spectral sensitivity depends on the type of photocathode and input window material. We use a multialkali photocathode and a fiber or UV-glass, which gives the short- wave cut of 360 nm or 250 nm, respectively.Comment: 4 pages, 7 figures, to be published in Nuclear Instruments & Methods in Physics Researc

    The Effect of Transfer Printing on Pentacene Thin-Film Crystal Structure

    Full text link
    The thermal deposition and transfer Printing method had been used to produce pentacene thin-films on SiO2/Si and plastic substrates (PMMA and PVP), respectively. X-ray diffraction patterns of pentacene thin films showed reflections associated with highly ordered polycrystalline films and a coexistence of two polymorph phases classified by their d-spacing, d(001): 14.4 and 15.4 A.The dependence of the c-axis correlation length and the phase fraction on the film thickness and printing temperature were measured. A transition from the 15.4 A phase towards 14.4 A phase was also observed with increasing film thickness. An increase in the c-axis correlation length of approximately 12% ~16% was observed for Pn films transfer printed onto a PMMA coated PET substrate at 100~120 C as compared to as-grown Pn films on SiO2/Si substrates. The transfer printing method is shown to be an attractive for the fabrication of pentacene thin-film transistors on flexible substrates partly because of the resulting improvement in the quality of the pentacene film.Comment: 5 pages, 5 figure

    Excitonic transitions in GaAs-AlxGa1-xAs multiple quantum wells affected by interface roughness

    Get PDF
    Time-resolved photoluminescence has been used to study the effects of interface roughness on excitonic transitions in GaAs-AlxGa1-xAs multiple quantum wells. In addition to the luminescence linewidth broadening and Stokes red shift, the interface roughness also strongly affects the dynamic process of optical transitions so that the excitonic transition peak shifts with delay time. However, the heavy-hole exciton transition has red shifts at short delay times and exhibits a turnover at longer delay times. A maximum shift of about 0.1 meV at a delay time of 4 ns was obtained. We have demonstrated that the peak shift is caused by interface roughness in the quantum wells. Furthermore, the decay of the excitonic transition is found to fit a two-exponential form. Based on a model involving interface roughness and two-exponential decay, we calculated the position of the excitonic transition peak as a function of delay time. Our calculations are consistent with experimental results

    The effect of dalargin on growth factors content in experimental ulcerative colitis

    Get PDF
    The aim of the study was to evaluate the dalargin effect on the content of transforming growth factor-β (TGF-β) and epidermal growth factor (EGF) in the colonic wall in mice with experimental ulcerative coliti

    Renormalization-group study of Anderson and Kondo impurities in gapless Fermi systems

    Full text link
    Thermodynamic properties are presented for four magnetic impurity models describing delocalized fermions scattering from a localized orbital at an energy-dependent rate Γ(ϵ)\Gamma(\epsilon) which vanishes precisely at the Fermi level, ϵ=0\epsilon = 0. Specifically, it is assumed that for small ϵ|\epsilon|, Γ(ϵ)ϵr\Gamma(\epsilon)\propto|\epsilon|^r with r>0r>0. The cases r=1r=1 and r=2r=2 describe dilute magnetic impurities in unconventional superconductors, ``flux phases'' of the two-dimensional electron gas, and zero-gap semiconductors. For the nondegenerate Anderson model, the depression of the low-energy scattering rate suppresses mixed valence in favor of local-moment behavior, and leads to a marked reduction in the exchange coupling on entry to the local-moment regime, with a consequent narrowing of the range of parameters within which the impurity spin becomes Kondo-screened. The relationship between the Anderson model and the exactly screened Kondo model with power-law exchange is examined. The intermediate-coupling fixed point identified in the latter model by Withoff and Fradkin (WF) has clear signatures in the thermodynamic properties and in the local magnetic response of the impurity. The underscreened, impurity-spin-one Kondo model and the overscreened, two-channel Kondo model both exhibit a conditionally stable intermediate-coupling fixed point in addition to unstable fixed points of the WF type. In all four models, the presence or absence of particle-hole symmetry plays a crucial role.Comment: 44 two-column REVTex pages, 31 epsf-embedded EPS figures. MINOR formatting changes. To appear in Phys. Rev.

    Central memory phenotype drives success of checkpoint inhibition in combination with CAR T cells

    Get PDF
    The immunosuppressive microenvironment in solid tumors is thought to form a barrier to the entry and efficacy of cell-based therapies such as chimeric antigen receptor (CAR) T cells. Combining CAR T cell therapy with checkpoint inhibitors has been demonstrated to oppose immune escape mechanisms in solid tumors and augment antitumor efficacy. We evaluated PD-1/PD-L1 signaling capacity and the impact of an inhibitor of this checkpoint axis in an in vitro system for cancer cell challenge, the coculture of L1CAM-specific CAR T cells with neuroblastoma cell lines. Fluorescence-activated cell sorting-based analyses and luciferase reporter assays were used to assess PD-1/PD-L1 expression on CAR T and tumor cells as well as CAR T cell ability to kill neuroblastoma cells. Coculturing neuroblastoma cell lines with L1CAM-CAR T cells upregulated PD-L1 expression on neuroblastoma cells, confirming adaptive immune resistance. Exposure to neuroblastoma cells also upregulated the expression of the PD-1/PD-L1 axis in CAR T cells. The checkpoint inhibitor, nivolumab, enhanced L1CAM-CAR T cell-directed killing. However, nivolumab-enhanced L1CAM-CAR T cell killing did not strictly correlate with PD-L1 expression on neuroblastoma cells. In fact, checkpoint inhibitor success relied on strong PD-1/PD-L1 axis expression in the CAR T cells, which in turn depended on costimulatory domains within the CAR construct, and more importantly, on the subset of T cells selected for CAR T cell generation. Thus, T cell subset selection for CAR T cell generation and CAR T cell prescreening for PD-1/PD-L1 expression could help determine when combination therapy with checkpoint inhibitors could improve treatment efficacy

    Probing Mechanical Properties of Graphene with Raman Spectroscopy

    Get PDF
    The use of Raman scattering techniques to study the mechanical properties of graphene films is reviewed here. The determination of Gruneisen parameters of suspended graphene sheets under uni- and bi-axial strain is discussed and the values are compared to theoretical predictions. The effects of the graphene-substrate interaction on strain and to the temperature evolution of the graphene Raman spectra are discussed. Finally, the relation between mechanical and thermal properties is presented along with the characterization of thermal properties of graphene with Raman spectroscopy.Comment: To appear in the Journal of Materials Scienc

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio
    corecore