105 research outputs found

    The 894G>T variant in the endothelial nitric oxide synthase gene and spina bifida risk

    Get PDF
    The 894G>T single nucleotide polymorphism (SNP) in the endothelial NOS (NOS3) gene, has recently been associated with embryonic spina bifida risk. In this study, a possible association between the NOS3 894G>T SNP and spina bifida risk in both mothers and children in a Dutch population was examined using both a case-control design and a transmission disequilibrium test (TDT). Possible interactions between the NOS3 894G>T SNP and the MTHFR 677C>T SNP, elevated plasma homocysteine, and decreased plasma folate concentrations were also studied. The NOS3 894TT genotype did not increase spina bifida risk in mothers or children (OR 1.50, 95%CI 0.71–3.19 and OR 1.78, 95%CI 0.75–4.25, respectively). The TDT demonstrated no preferential transmission of the NOS3 894T allele (Χ2 = 0.06, P = 0.81). In combination with the MTHFR 677TT genotype or elevated plasma homocysteine concentrations, the NOS3 894GT/TT genotype increased maternal spina bifida risk (OR 4.52, 95%CI 1.55–13.22 and OR 3.38, 95%CI 1.46–7.84, respectively). In our study population, the NOS3 894GT/TT genotype might be a risk factor for having a spina bifida affected child in mothers who already have an impaired homocysteine metabolism

    Antibacterial activity of Artemisia nilagirica leaf extracts against clinical and phytopathogenic bacteria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The six organic solvent extracts of <it>Artemisia nilagirica </it>were screened for the potential antimicrobial activity against phytopathogens and clinically important standard reference bacterial strains.</p> <p>Methods</p> <p>The agar disk diffusion method was used to study the antibacterial activity of <it>A. nilagirica </it>extracts against 15 bacterial strains. The Minimum Inhibitory Concentration (MIC) of the plant extracts were tested using two fold agar dilution method at concentrations ranging from 32 to 512 μg/ml. The phytochemical screening of extracts was carried out for major phytochemical derivatives in <it>A. nilagirica</it>.</p> <p>Results</p> <p>All the extracts showed inhibitory activity for gram-positive and gram-negative bacteria except for <it>Klebsiella pneumoniae, Enterococcus faecalis </it>and <it>Staphylococcus aureus</it>. The hexane extract was found to be effective against all phytopathogens with low MIC of 32 μg/ml and the methanol extract exhibited a higher inhibition activity against <it>Escherichia coli, Yersinia enterocolitica, Salmonella typhi</it>, <it>Enterobacter aerogenes</it>, <it>Proteus vulgaris</it>, <it>Pseudomonas aeruginosa </it>(32 μg/ml), <it>Bacillus subtilis </it>(64 μg/ml) and <it>Shigella flaxneri </it>(128 μg/ml). The phytochemical screening of extracts answered for the major derivative of alkaloids, amino acids, flavonoids, phenol, quinines, tannins and terpenoids.</p> <p>Conclusion</p> <p>All the extracts showed antibacterial activity against the tested strains. Of all, methanol and hexane extracts showed high inhibition against clinical and phytopathogens, respectively. The results also indicate the presence of major phytochemical derivatives in the <it>A. nilagirica </it>extracts. Hence, the isolation and purification of therapeutic potential compounds from <it>A. nilagirica </it>could be used as an effective source against bacterial diseases in human and plants.</p

    Acute toxicity, brine shrimp cytotoxicity and relaxant activity of fruits of callistemon citrinus curtis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Callistemon citrinus </it>Curtis belongs to family Myrtaceae that has a great medicinal importance. In our previous work, fruits of <it>Callistemon citrinus </it>were reported to have relaxant (antispasmodic) activity. The current work describes the screening of fractions of the crude methanol extract for tracing spasmolytic constituents so that it shall help us for isolation of bioactive compounds. Acute toxicity and brine shrimp cytotoxicity of crude methanol extract are also performed to standardize it.</p> <p>Methods</p> <p>The crude methanol extract was obtained by maceration with distilled water (500 ml) three times and fractionated successively with <it>n-</it>hexane, chloroform, ethyl acetate and <it>n-</it>butanol (300 ml of each solvent). Phytochemical analysis for crude methanol extract was performed. Acute toxicity studies were performed in mice. Brine shrimp cytotoxicity studies were performed to determine its cytotoxicity and standardize it. In other series of experiments, rabbits' jejunum preparations were used in screening for possible relaxant activities of various fractions. They were applied in concentrations of 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 5.0 and 10.0 mg/ml on spontaneous rabbits' jejunum preparations. In similar fashion, fractions were also tested on KCl (80 mM) -induced contractions. Calcium chloride curves were constructed in K-rich Tyrode's solution. The effects of various fractions were tested on calcium chloride curves at concentrations 1.0, 3.0, 5.0 and 10.0 mg/ml. Curves of verapamil used as reference drug at concentration 0.1 μM and 0.3 μM were also constructed. The curves were compared with their respective controls for possible right shift.</p> <p>Results</p> <p>Methanol extract tested strongly positive for saponins and tannins. However, it tested mild positive for presence of proteins, amino acids, carbohydrates and phenolic compounds. LD<sub>50 </sub>value for crude methanol extract is 476.25 ± 10.3 (470-481, n = 4) mg/ml. Similarly, EC<sub>50 </sub>value for brine shrimp cytotoxicity is 65.5 ± 7.28 (60.8- 69.4, n = 4) mg/ml. All the fractions relaxed the spontaneous and KCl-induced contractions. EC<sub>50 </sub>values (mg/ml) for effects of ethyl acetate fraction on spontaneous and KCl induced contractions are 2.62 ± 0.78 (2.15-3.0, n = 4) and 3.72 ± 0.86 (3.38-4.28, n = 4) respectively. Respective EC<sub>50 </sub>values (mg/ml) for <it>n-</it>butanol fraction are 3.59 ± 0.2(3.07-3.9, n = 4) for spontaneous, and 5.57 ± 0.2 (5.07-6.11, n = 4) for KCl- induced contractions. EC<sub>50 </sub>value for control calcium chloride curve (without extract) is -2.73 ± 0.19 (-2.6 - -2.81, n = 4) while EC<sub>50 </sub>for curves treated with 5.0 mg/ml of chloroform is -2.22 ± 0.02 (-2.16 - -2.3, n = 4). EC<sub>50 </sub>value for ethyl acetate treated (1.0 mg/ml) tissues is -1.95 ± 0.10 (-1.88 - -2.0, n = 4) <it>vs</it>. control EC<sub>50 </sub>= -2.71 ± 0.08 (-2.66 - -2.76, n = 4). All the fractions, except <it>n-</it>hexane, showed a right shift like that of verapamil (EC<sub>50 </sub>= -1.72 ± 0.15 (-1.62 - -1.8, n = 4) vs. Control EC<sub>50 </sub>= -2.41 ± 0.06 (-2.38 - - 2.44, n = 4), a standard drug that blocks voltage operated calcium channels.</p> <p>Conclusion</p> <p>Relaxant constituents were more concentrated in ethylacetate fraction followed by chloroform, <it>n -</it>butanol and aqueous fractions that warrant for its isolation. The crude methanol extract is safe at concentration 250 mg/ml or below and results of brine shrimp cytotoxicity assay imply the plant specie may be a source of cytotoxic agents.</p

    To what extent can traditional medicine contribute a complementary or alternative solution to malaria control programmes?

    Get PDF
    Recent studies on traditional medicine (TM) have begun to change perspectives on TM effects and its role in the health of various populations. The safety and effectiveness of some TMs have been studied, paving the way to better collaboration between modern and traditional systems. Traditional medicines still remain a largely untapped health resource: they are not only sources of new leads for drug discoveries, but can also provide lessons and novel approaches that may have direct public-health and economic impact. To optimize such impact, several interventions have been suggested, including recognition of TM's economic and medical worth at academic and health policy levels; establishing working relationships with those prescribing TM; providing evidence for safety and effectiveness of local TM through appropriate studies with malaria patients; spreading results for clinical recommendations and health policy development; implementing and evaluating results of new health policies that officially integrate TM

    Overexpression of endothelial nitric oxide synthase suppresses features of allergic asthma in mice

    Get PDF
    BACKGROUND: Asthma is associated with airway hyperresponsiveness and enhanced T-cell number/activity on one hand and increased levels of exhaled nitric oxide (NO) with expression of inducible NO synthase (iNOS) on the other hand. These findings are in paradox, as NO also relaxes airway smooth muscle and has immunosuppressive properties. The exact role of the endothelial NOS (eNOS) isoform in asthma is still unknown. We hypothezised that a delicate regulation in the production of NO and its bioactive forms by eNOS might be the key to the pathogenesis of asthma. METHODS: The contribution of eNOS on the development of asthmatic features was examined. We used transgenic mice that overexpress eNOS and measured characteristic features of allergic asthma after sensitisation and challenge of these mice with the allergen ovalbumin. RESULTS: eNOS overexpression resulted in both increased eNOS activity and NO production in the lungs. Isolated thoracic lymph nodes cells from eNOS overexpressing mice that have been sensitized and challenged with ovalbumin produced significantly less of the cytokines IFN-γ, IL-5 and IL-10. No difference in serum IgE levels could be found. Further, there was a 50% reduction in the number of lymphocytes and eosinophils in the lung lavage fluid of these animals. Finally, airway hyperresponsiveness to methacholine was abolished in eNOS overexpressing mice. CONCLUSION: These findings demonstrate that eNOS overexpression attenuates both airway inflammation and airway hyperresponsiveness in a model of allergic asthma. We suggest that a delicate balance in the production of bioactive forms of NO derived from eNOS might be essential in the pathophysiology of asthma

    Needs for dental information of adolescents from an inner city area of Liverpool

    No full text
    corecore