6,962 research outputs found
Phase diagrams of a p-Wave superconductor inside a mesoscopic disc-shaped sample
We study the finite-size and boundary effects on a time-reversal-symmetry
breaking p-wave superconducting state in a mesoscopic disc geometry using
Ginzburg-Landau theory. We show that, for a large parameter range, the system
exhibits multiple phase transitions. The superconducting transition from the
normal state can also be reentrant as a function of external magnetic field.Comment: Revised version published in Physical Review
Inert-states of spin-5 and spin-6 Bose-Einstein condensates
In this paper we consider spinor Bose-Einstein condensates with spin f=5 and
f=6 in the presence and absence of external magnetic field at the mean field
level. We calculate all of so-called inert-states of these systems.
Inert-states are very unique class of stationary states because they remain
stationary while Hamiltonian parameters change. Their existence comes from
Michel's theorem. For illustration of symmetry properties of the inert-states
we use method that allows classification of the systems as a polyhedron with 2f
vertices proposed by R. Barnett et al., Phys. Rev. Lett. 97, 180412 (2006).Comment: 19 pages, 4 figure
In vitro growth, acidogenicity and cariogenicity of predominant bacteria in root caries
published_or_final_versio
Symmetry and inert states of spin Bose Condensates
We construct the list of all possible inert states of spin Bose condensates
for . In doing so, we also obtain their symmetry properties. These
results are applied to classify line defects of these spin condensates at zero
magnetic field.Comment: an error in Sec III C correcte
Josephson Current between Triplet and Singlet Superconductors
The Josephson effect between triplet and singlet superconductors is studied.
Josephson current can flow between triplet and singlet superconductors due to
the spin-orbit coupling in the spin-triplet superconductor but it is finite
only when triplet superconductor has , where and
are the perpendicular components of orbital angular momentum and spin angular
momentum of the triplet Cooper pairs, respectively. The recently observed
temperature and orientational dependence of the critical current through a
Josephson junction between UPt and Nb is investigated by considering a
non-unitary triplet state.Comment: 4 pages, no figure
Phase diagram of asymmetric Fermi gas across Feshbach resonance
We study the phase diagram of the dilute two-component Fermi gas at zero
temperature as a function of the polarization and coupling strength. We map out
the detailed phase separations between superfluid and normal states near the
Feshbach resonance. We show that there are three different coexistence of
superfluid and normal phases corresponding to phase separated states between:
(I) the partially polarized superfluid and the fully polarized normal phases,
(II) the unpolarized superfluid and the fully polarized normal phases and (III)
the unpolarized superfluid and the partially polarized normal phases from
strong-coupling BEC side to weak-coupling BCS side. For pairing between two
species, we found this phase separation regime gets wider and moves toward the
BEC side for the majority species are heavier but shifts to BCS side and
becomes narrow if they are lighter.Comment: 4 pages, 3 figures. Submitted to LT25 on June 200
Thin Films of 3He -- Implications on the Identification of 3 He -A
Recently the identification of 3He-A with the axial state has been
questioned. It is suggested that the A-phase can actually be in the axiplanar
state. We point out in the present paper that experiments in a film geometry
may be useful to distinguish the above two possibilities. In particular a
second order phase transition between an axial and an axiplanar state would
occur as a function of thickness or temperature.Comment: 3 pages, no figures latex- revtex aps accepted by J. of Low
Temperature Physic
Sensitivity-analysis method for inverse simulation application
An important criticism of traditional methods of inverse simulation that are based on the Newton–Raphson algorithm is that they suffer from numerical problems. In this paper these problems are discussed and a new method based on sensitivity-analysis theory is developed and evaluated. The Jacobian matrix may be calculated by solving a sensitivity equation and this has advantages over the approximation methods that are usually applied when the derivatives of output variables with respect to inputs cannot be found analytically. The methodology also overcomes problems of input-output redundancy that arise in the traditional approaches to inverse simulation. The sensitivity- analysis approach makes full use of information within the time interval over which key quantities are compared, such as the difference between calculated values and the given ideal maneuver after each integration step. Applications to nonlinear HS125 aircraft and Lynx helicopter models show that, for this sensitivity-analysis method, more stable and accurate results are obtained than from use of the traditional Newton–Raphson approach
Signature of superconducting states in cubic crystal without inversion symmetry
The effects of absence of inversion symmetry on superconducting states are
investigated theoretically. In particular we focus on the noncentrosymmetric
compounds which have the cubic symmetry like LiPtB. An appropriate
and isotropic spin-orbital interaction is added in the Hamiltonian and it acts
like a magnetic monopole in the momentum space. The consequent pairing
wavefunction has an additional triplet component in the pseudospin space, and a
Zeeman magnetic field can induce a collinear supercurrent
with a coefficient . The effects of anisotropy embedded in the cubic
symmetry and the nodal superconducting gap function on are also
considered. From the macroscopic perspectives, the pair of mutually induced
and magnetization can affect the distribution of magnetic
field in such noncentrosymmetric superconductors, which is studied through
solving the Maxwell equation in the Meissner geometry as well as the case of a
single vortex line. In both cases, magnetic fields perpendicular to the
external ones emerge as a signature of the broken symmetry.Comment: 16 pages in pre-print forma
Asymmetric Fermi superfluid in a harmonic trap
We consider a dilute two-component atomic fermion gas with unequal
populations in a harmonic trap potential using the mean field theory and the
local density approximation. We show that the system is phase separated into
concentric shells with the superfluid in the core surrounded by the normal
fermion gas in both the weak-coupling BCS side and near the Feshbach resonance.
In the strong-coupling BEC side, the composite bosons and left-over fermions
can be mixed. We calculate the cloud radii and compare axial density profiles
systemically for the BCS, near resonance and BEC regimes.Comment: 15 pages, 5 figure
- …