46,322 research outputs found

    Relationships between geographic and inertial coordinates of position

    Get PDF
    Relationships between geographic and inertial coordinates of positio

    The shape of primordial non-Gaussianity and the CMB bispectrum

    Full text link
    We present a set of formalisms for comparing, evolving and constraining primordial non-Gaussian models through the CMB bispectrum. We describe improved methods for efficient computation of the full CMB bispectrum for any general (non-separable) primordial bispectrum, incorporating a flat sky approximation and a new cubic interpolation. We review all the primordial non-Gaussian models in the present literature and calculate the CMB bispectrum up to l <2000 for each different model. This allows us to determine the observational independence of these models by calculating the cross-correlation of their CMB bispectra. We are able to identify several distinct classes of primordial shapes - including equilateral, local, warm, flat and feature (non-scale invariant) - which should be distinguishable given a significant detection of CMB non-Gaussianity. We demonstrate that a simple shape correlator provides a fast and reliable method for determining whether or not CMB shapes are well correlated. We use an eigenmode decomposition of the primordial shape to characterise and understand model independence. Finally, we advocate a standardised normalisation method for fNLf_{NL} based on the shape autocorrelator, so that observational limits and errors can be consistently compared for different models.Comment: 32 pages, 20 figure

    Primordial non-Gaussianity and the CMB bispectrum

    Get PDF
    We present a new formalism, together with efficient numerical methods, to directly calculate the CMB bispectrum today from a given primordial bispectrum using the full linear radiation transfer functions. Unlike previous analyses which have assumed simple separable ansatze for the bispectrum, this work applies to a primordial bispectrum of almost arbitrary functional form, for which there may have been both horizon-crossing and superhorizon contributions. We employ adaptive methods on a hierarchical triangular grid and we establish their accuracy by direct comparison with an exact analytic solution, valid on large angular scales. We demonstrate that we can calculate the full CMB bispectrum to greater than 1% precision out to multipoles l<1800 on reasonable computational timescales. We plot the bispectrum for both the superhorizon ('local') and horizon-crossing ('equilateral') asymptotic limits, illustrating its oscillatory nature which is analogous to the CMB power spectrum

    The XMM-Newton spectral-fit database

    Full text link
    The XMM-Newton spectral-fit database is an ongoing ESA funded project aimed to construct a catalogue of spectral-fitting results for all the sources within the XMM-Newton serendipitous source catalogue for which spectral data products have been pipeline-extracted (~ 120,000 X-ray source detections). The fundamental goal of this project is to provide the astronomical community with a tool to construct large and representative samples of X-ray sources by allowing source selection according to spectral properties.Comment: Conference proceedings of IAU Symposium 304: Multiwavelength AGN surveys and studie

    String windings in the early universe

    Full text link
    We study string dynamics in the early universe. Our motivation is the proposal of Brandenberger and Vafa, that string winding modes may play a key role in decompactifying three spatial dimensions. We model the universe as a homogeneous but anisotropic 9-torus filled with a gas of excited strings. We adopt initial conditions which fix the dilaton and the volume of the torus, but otherwise assume all states are equally likely. We study the evolution of the system both analytically and numerically to determine the late-time behavior. We find that, although dynamical evolution can indeed lead to three large spatial dimensions, such an outcome is not statistically favored.Comment: 26 pages, LaTeX, 4 eps figure

    Information extraction and transmission techniques for spaceborne synthetic aperture radar images

    Get PDF
    Information extraction and transmission techniques for synthetic aperture radar (SAR) imagery were investigated. Four interrelated problems were addressed. An optimal tonal SAR image classification algorithm was developed and evaluated. A data compression technique was developed for SAR imagery which is simple and provides a 5:1 compression with acceptable image quality. An optimal textural edge detector was developed. Several SAR image enhancement algorithms have been proposed. The effectiveness of each algorithm was compared quantitatively

    The NASA Astrophysics Data System: Overview

    Get PDF
    The NASA Astrophysics Data System Abstract Service has become a key component of astronomical research. It provides bibliographic information daily, or near daily, to a majority of astronomical researchers worldwide. We describe the history of the development of the system and its current status. We show several examples of how to use the ADS, and we show how ADS use has increased as a function of time. Currently it is still increasing exponentially, with a doubling time for number of queries of 17 months. Using the ADS logs we make the first detailed model of how scientific journals are read as a function of time since publication. The impact of the ADS on astronomy can be calculated after making some simple assumptions. We find that the ADS increases the efficiency of astronomical research by 333 Full Time Equivalent (2000 hour) research years per year, and that the value of the early development of the ADS for astronomy, compared with waiting for mature technologies to be adopted, is 2332 FTE research years. The ADS is available at http://adswww.harvard.edu/.Comment: 19 pages, 22 figure

    Three-dimensional theory of stimulated Raman scattering

    Full text link
    We present a three-dimensional theory of stimulated Raman scattering (SRS) or superradiance. In particular we address how the spatial and temporal properties of the generated SRS beam, or Stokes beam, of radiation depends on the spatial properties of the gain medium. Maxwell equations for the Stokes field operators and of the atomic operators are solved analytically and a correlation function for the Stokes field is derived. In the analysis we identify a superradiating part of the Stokes radiation that exhibit beam characteristics. We show how the intensity in this beam builds up in time and at some point largely dominates the total Stokes radiation of the gain medium. We show how the SRS depends on geometric factors such as the Fresnel number and the optical depth, and that in fact these two factors are the only factors describing the coherent radiation.Comment: 21 pages 14 figure
    • …
    corecore