26,796 research outputs found

    Experiments on the stability and transition of two-dimensional and three-dimensional boundary layers with suction

    Get PDF
    The preliminary experimental development work directed towards the understanding of transition in boundary layers with suction is presented. The basic stability experiment was established and the facility was certified

    The Surveyor 5, 6, and 7 Flight Paths and Their Determination from Tracking Data

    Get PDF
    Surveyor 5, 6, and 7 flight paths and tracking data for space station location

    WHAM Observations of H-Alpha, [S II], and [N II] toward the Orion and Perseus Arms: Probing the Physical Conditions of the Warm Ionized Medium

    Get PDF
    A large portion of the Galaxy (l = 123 deg to 164 deg, b = -6 deg to -35 deg), which samples regions of the Local (Orion) spiral arm and the more distant Perseus arm, has been mapped with the Wisconsin H-Alpha Mapper (WHAM) in the H-Alpha, [S II] 6716, and [N II] 6583 lines. Several trends noticed in emission-line investigations of diffuse gas in other galaxies are confirmed in the Milky Way and extended to much fainter emission. We find that the [S II]/H-Alpha and [N II]/H-Alpha ratios increase as absolute H-Alpha intensities decrease. For the more distant Perseus arm emission, the increase in these ratios is a strong function of Galactic latitude and thus, of height above the Galactic plane. The [S II]/[N II] ratio is relatively independent of H-Alpha intensity. Scatter in this ratio appears to be physically significant, and maps of it suggest regions with similar ratios are spatially correlated. The Perseus arm [S II]/[N II] ratio is systematically lower than Local emission by 10%-20%. With [S II]/[N II] fairly constant over a large range of H-Alpha intensities, the increase of [S II]/H-Alpha and [N II]/H-Alpha with |z| seems to reflect an increase in temperature. Such an interpretation allows us to estimate the temperature and ionization conditions in our large sample of observations. We find that WIM temperatures range from 6,000 K to 9,000 K with temperature increasing from bright to faint H-Alpha emission (low to high [S II]/H-Alpha and [N II]/H-Alpha) respectively. Changes in [S II]/[N II] appear to reflect changes in the local ionization conditions (e.g. the S+/S++ ratio). We also measure the electron scale height in the Perseus arm to be 1.0+/-0.1 kpc, confirming earlier, less accurate determinations.Comment: 28 pages, 10 figures. Figures 2 and 3 are full color--GIFs provided here, original PS figures at link below. Accepted for publication in ApJ. More information about the WHAM project can be found at http://www.astro.wisc.edu/wham/ . REVISION: Figure 6, bottom panel now contains the proper points. No other changes have been mad

    Iron fluorescence from within the innermost stable orbit of black hole accretion disks

    Get PDF
    The fluorescent iron Ka line is a powerful observational probe of the inner regions of black holes accretion disks. Previous studies have assumed that only material outside the radius of marginal stability can contribute to the observed line emission. Here, we show that fluorescence by material inside the radius of marginal stability, which is in the process of spiralling towards the event horizon, can have a observable influence on the iron line profile and equivalent width. For concreteness, we consider the case of a geometrically thin accretion disk, around a Schwarzschild black hole, in which fluorescence is excited by an X-ray source placed at some height above the disk and on the axis of the disk. Fully relativistic line profiles are presented for various source heights and efficiencies. It is found that the extra line flux generally emerges in the extreme red wing of the iron line, due to the large gravitational redshift experienced by photons from the region within the radius of marginal stability. We apply our models to the variable iron line seen in the ASCA spectrum of the Seyfert nucleus MCG-6-30-15. It is found that the change in the line profile, equivalent width, and continuum normalization, can be well explained as being due to a change in the height of the source above the disk. We discuss the implications of these results for distinguishing rapidly-rotating black holes from slowly rotating holes using iron line diagnostics.Comment: 20 pages, LaTeX. Accepted for publication in Astrophysical Journal. Figures 3 to 7 replaced with corrected versions (previous figures affected by calculational error). Some changes in the best fitting parameter

    Are the Nuclei of Seyfert 2 Galaxies Viewed Face-On?

    Full text link
    We show from modeling the Fe Kalpha line in the ASCA spectra of four X-ray bright narrow emission line galaxies (Seyfert types 1.9 and 2) that two equally viable physical models can describe the observed line profile. The first is discussed by Turner et al. (1998) and consists of emission from a nearly pole-on accretion disk. The second, which is statistically preferred, is a superposition of emission from an accretion disk viewed at an intermediate inclination of about 48 degrees and a distinct, unresolved feature that presumably originates some distance from the galaxy nucleus. The intermediate inclination is entirely consistent with unified schemes and our findings challenge recent assertions that Seyfert 2 galaxies are preferentially viewed with their inner regions face-on. We derive mean equivalent widths for the narrow and disk lines of =60 eV and = 213 eV, respectively. The X-ray data are well described by a geometry in which our view of the active nucleus intersects and is blocked by the outer edges of the obscuring torus, and therefore do not require severe misalignments between the accretion disk and the torus.Comment: 19 pages, 3 postscript figures. Accepted for publication in ApJ

    On the lack of X-ray iron line reverberation in MCG-6-30-15: Implications for the black hole mass and accretion disk structure

    Get PDF
    We use the method of Press, Rybicki & Hewitt (1992) to search for time lags and time leads between different energy bands of the RXTE data for MCG-6-30-15. We tailor our search in order to probe any reverberation signatures of the fluorescent iron Kalpha line that is thought to arise from the inner regions of the black hole accretion disk. In essence, an optimal reconstruction algorithm is applied to the continuum band (2-4keV) light curve which smoothes out noise and interpolates across the data gaps. The reconstructed continuum band light curve can then be folded through trial transfer functions in an attempt to find lags or leads between the continuum band and the iron line band (5-7keV). We find reduced fractional variability in the line band. The spectral analysis of Lee et al. (1999) reveals this to be due to a combination of an apparently constant iron line flux (at least on timescales of few x 10^4s), and flux correlated changes in the photon index. We also find no evidence for iron line reverberation and exclude reverberation delays in the range 0.5-50ksec. This extends the conclusions of Lee et al. and suggests that the iron line flux remains constant on timescales as short as 0.5ksec. The large black hole mass (>10^8Msun) naively suggested by the constancy of the iron line flux is rejected on other grounds. We suggest that the black hole in MCG-6-30-15 has a mass of M_BH~10^6-10^7Msun and that changes in the ionization state of the disk may produce the puzzling spectral variability. Finally, it is found that the 8-15keV band lags the 2-4keV band by 50-100s. This result is used to place constraints on the size and geometry of the Comptonizing medium responsible for the hard X-ray power-law in this AGN.Comment: 11 pages, 13 postscript figures. Accepted for publication in Ap

    MicroRNA-330-5p as a putative modulator of neoadjuvant chemoradiotherapy sensitivity in oesophageal adenocarcinoma

    Get PDF
    Oesophageal adenocarcinoma (OAC) is the sixth most common cause of cancer deaths worldwide, and the 5-year survival rate for patients diagnosed with the disease is approximately 17%. The standard of care for locally advanced disease is neoadjuvant chemotherapy or, more commonly, combined neoadjuvant chemoradiation therapy (neo-CRT) prior to surgery. Unfortunately, ~60-70% of patients will fail to respond to neo-CRT. Therefore, the identification of biomarkers indicative of patient response to treatment has significant clinical implications in the stratification of patient treatment. Furthermore, understanding the molecular mechanisms underpinning tumour response and resistance to neo-CRT will contribute towards the identification of novel therapeutic targets for enhancing OAC sensitivity to CRT. MicroRNAs (miRNA/miR) function to regulate gene and protein expression and play a causal role in cancer development and progression. MiRNAs have also been identified as modulators of key cellular pathways associated with resistance to CRT. Here, to identify miRNAs associated with resistance to CRT, pre-treatment diagnostic biopsy specimens from patients with OAC were analysed using miRNA-profiling arrays. In pre-treatment biopsies miR-330-5p was the most downregulated miRNA in patients who subsequently failed to respond to neo-CRT. The role of miR-330 as a potential modulator of tumour response and sensitivity to CRT in OAC was further investigated in vitro. Through vector-based overexpression the E2F1/p-AKT survival pathway, as previously described, was confirmed as a target of miR-330 regulation. However, miR-330-mediated alterations to the E2F1/p-AKT pathway were insufficient to significantly alter cellular sensitivity to chemotherapy (cisplatin and 5-flurouracil). In contrast, silencing of miR-330-5p enhanced, albeit subtly, cellular resistance to clinically relevant doses of radiation. This study highlights the need for further investigation into the potential of miR-330-5p as a predictive biomarker of patient sensitivity to neo-CRT and as a novel therapeutic target for manipulating cellular sensitivity to neo-CRT in patients with OAC

    On The Reddening in X-ray Absorbed Seyfert 1 Galaxies

    Get PDF
    There are several Seyfert galaxies for which there is a discrepancy between the small column of neutral hydrogen deduced from X-ray observations and the much greater column derived from the reddening of the optical/UV emission lines and continuum. The standard paradigm has the dust within the highly ionized gas which produces O~VII and O~VIII absorption edges (i.e., a ``dusty warm absorber''). We present an alternative model in which the dust exists in a component of gas in which hydrogen has been stripped, but which is at too low an ionization state to possess significant columns of O~VII and O~VIII (i.e, a ``lukewarm absorber''). The lukewarm absorber is at sufficient radial distance to encompass much of the narrow emission-line region, and thus accounts for the narrow-line reddening, unlike the dusty warm absorber. We test the model by using a combination of photoionization models and absorption edge fits to analyze the combined ROSAT/ASCA dataset for the Seyfert 1.5 galaxy, NGC 3227. We show that the data are well fit by a combination of the lukewarm absorber and a more highly ionized component similar to that suggested in earlier studies. We predict that the lukewarm absorber will produce strong UV absorption lines of N V, C IV, Si IV and Mg II. Finally, these results illustrate that singly ionized helium is an important, and often overlooked, source of opacity in the soft X-ray band (100 - 500 eV).Comment: 17 pages, Latex, includes 1 figure (encapsulated postscript), one additional table in Latex (landscape format), to appear in the Astrophysical Journa
    • …
    corecore