26,587 research outputs found

    Dielectric function, screening, and plasmons in 2D graphene

    Full text link
    The dynamical dielectric function of two dimensional graphene at arbitrary wave vector qq and frequency ω\omega, ϵ(q,ω)\epsilon(q,\omega), is calculated in the self-consistent field approximation. The results are used to find the dispersion of the plasmon mode and the electrostatic screening of the Coulomb interaction in 2D graphene layer within the random phase approximation. At long wavelengths (q0q\to 0) the plasmon dispersion shows the local classical behavior ωcl=ω0q\omega_{cl} = \omega_0 \sqrt{q}, but the density dependence of the plasma frequency (ω0n1/4\omega_0 \propto n^{1/4}) is different from the usual 2D electron system (ω0n1/2\omega_0 \propto n^{1/2}). The wave vector dependent plasmon dispersion and the static screening function show very different behavior than the usual 2D case.Comment: 6 pages, 3 figure

    Quantum fluctuations of Cosmological Perturbations in Generalized Gravity

    Get PDF
    Recently, we presented a unified way of analysing classical cosmological perturbation in generalized gravity theories. In this paper, we derive the perturbation spectrums generated from quantum fluctuations again in unified forms. We consider a situation where an accelerated expansion phase of the early universe is realized in a particular generic phase of the generalized gravity. We take the perturbative semiclassical approximation which treats the perturbed parts of the metric and matter fields as quantum mechanical operators. Our generic results include the conventional power-law and exponential inflations in Einstein's gravity as special cases.Comment: 5 pages, revtex, no figure

    Velocity renormalization and anomalous quasiparticle dispersion in extrinsic graphene

    Full text link
    Using many-body diagrammatic perturbation theory we consider carrier density- and substrate-dependent many-body renormalization of doped or gated graphene induced by Coulombic electron-electron interaction effects. We quantitatively calculate the many-body spectral function, the renormalized quasiparticle energy dispersion, and the renormalized graphene velocity using the leading-order self-energy in the dynamically screened Coulomb interaction within the ring diagram approximation. We predict experimentally detectable many-body signatures, which are enhanced as the carrier density and the substrate dielectric constant are reduced, finding an intriguing instability in the graphene excitation spectrum at low wave vectors where interaction completely destroys all particle-like features of the noninteracting linear dispersion. We also make experimentally relevant quantitative predictions about the carrier density and wave-vector dependence of graphene velocity renormalization induced by electron-electron interaction. We compare on-shell and off-shell self-energy approximations within the ring diagram approximation, finding a substantial quantitative difference between their predicted velocity renormalization corrections in spite of the generally weak-coupling nature of interaction in graphene.Comment: 9 pages, 6 figure

    Conserved cosmological structures in the one-loop superstring effective action

    Get PDF
    A generic form of low-energy effective action of superstring theories with one-loop quantum correction is well known. Based on this action we derive the complete perturbation equations and general analytic solutions in the cosmological spacetime. Using the solutions we identify conserved quantities characterizing the perturbations: the amplitude of gravitational wave and the perturbed three-space curvature in the uniform-field gauge both in the large-scale limit, and the angular-momentum of rotational perturbation are conserved independently of changing gravity sector. Implications for calculating perturbation spectra generated in the inflation era based on the string action are presented.Comment: 5 pages, no figure, To appear in Phys. Rev.

    Optical and transport gaps in gated bilayer graphene

    Full text link
    We discuss the effect of disorder on the band gap measured in bilayer graphene in optical and transport experiments. By calculating the optical conductivity and density of states using a microscopic model in the presence of disorder, we demonstrate that the gap associated with transport experiments is smaller than that associated with optical experiments. Intrinsic bilayer graphene has an optical conductivity in which the energy of the peaks associated with the interband transition are very robust against disorder and thus provide an estimate of the band gap. In contrast, extraction of the band gap from the optical conductivity of extrinsic bilayer graphene is almost impossible for significant levels of disorder due to the ambiguity of the transition peaks. The density of states contains an upper bound on the gap measured in transport experiments, and disorder has the effect of reducing this gap which explains why these experiments have so far been unable to replicate the large band gaps seen in optical measurements.Comment: 5 pages, 5 figures, RevTeX. Published versio

    Magnon softening and damping in the ferromagnetic manganites due to orbital correlations

    Full text link
    We present a theory for spin excitations in ferromagnetic metallic manganites and demonstrate that orbital fluctuations have strong effects on the magnon dynamics in the case these compounds are close to a transition to an orbital ordered state. In particular we show that the scattering of the spin excitations by low-lying orbital modes with cubic symmetry causes both the magnon softening and damping observed experimentally.Comment: 2 pages, 2 figures, SCES2003 Roma, to appear in J. Mag. Magn. Ma

    Valley dependent many-body effects in 2D semiconductors

    Full text link
    We calculate the valley degeneracy (gvg_v) dependence of the many-body renormalization of quasiparticle properties in multivalley 2D semiconductor structures due to the Coulomb interaction between the carriers. Quite unexpectedly, the gvg_v dependence of many-body effects is nontrivial and non-generic, and depends qualitatively on the specific Fermi liquid property under consideration. While the interacting 2D compressibility manifests monotonically increasing many-body renormalization with increasing gvg_v, the 2D spin susceptibility exhibits an interesting non-monotonic gvg_v dependence with the susceptibility increasing (decreasing) with gvg_v for smaller (larger) values of gvg_v with the renormalization effect peaking around gv12g_v\sim 1-2. Our theoretical results provide a clear conceptual understanding of recent valley-dependent 2D susceptibility measurements in AlAs quantum wells.Comment: 5 pages, 3 figure

    A conserved variable in the perturbed hydrodynamic world model

    Full text link
    We introduce a scalar-type perturbation variable Φ\Phi which is conserved in the large-scale limit considering general sign of three-space curvature (KK), the cosmological constant (Λ\Lambda), and time varying equation of state. In a pressureless medium Φ\Phi is {\it exactly conserved} in all scales.Comment: 4 pages, no figure, To appear in Phys. Rev.
    corecore