91 research outputs found

    Cell-Degradation of Calcium Phosphate Ceramics

    Get PDF
    Calcium phosphate ceramics are used in bone surgery under different forms: dense or porous ceramic s as bone substitute, thin ceramic coatings on metallic implants as an osseointegration enhancer. Their degradation depends on their physico-chemical properties and particularly on their chemical composition. Natural calcium phosphates of bone are degraded by mononuclear or multinuclear cells and the extracellular matrix induces the differentiation of the degrading-cells. Hydroxyapatite, which is one of the most used calcium phosphates , is known as a low degradation material. However, the histological analysis of implanted HA-materials both in animals and in humans showed that a cellular degradation took place on the surface of the material

    Catalytic C(sp3)-H bond activation in tertiary alkylamines.

    Get PDF
    The development of robust catalytic methods to assemble tertiary alkylamines provides a continual challenge to chemical synthesis. In this regard, transformation of a traditionally unreactive C-H bond, proximal to the nitrogen atom, into a versatile chemical entity would be a powerful strategy for introducing functional complexity to tertiary alkylamines. A practical and selective metal-catalysed C(sp3)-H activation facilitated by the tertiary alkylamine functionality, however, remains an unsolved problem. Here, we report a Pd(II)-catalysed protocol that appends arene feedstocks to tertiary alkylamines via C(sp3)-H functionalization. A simple ligand for Pd(II) orchestrates the C-H activation step in favour of deleterious pathways. The reaction can use both simple and complex starting materials to produce a range of multifaceted Îł-aryl tertiary alkylamines and can be rendered enantioselective. The enabling features of this transformation should be attractive to practitioners of synthetic and medicinal chemistry as well as in other areas that use biologically active alkylamines

    Cross-Dehydrogenative Couplings between Indoles and ÎČ-Keto Esters : Ligand-Assisted Ligand Tautomerization and Dehydrogenation via a Proton-Assisted Electron Transfer to Pd(II)

    Get PDF
    Cross-dehydrogenative coupling reactions between -ketoesters and electron-rich arenes, such as indoles, proceed with high regiochemical fidelity with a range of -ketoesters and indoles. The mechanism of the reaction between a prototypical -ketoester, ethyl 2-oxocyclopentanonecarboxylate and N-methylindole, has been studied experimentally by monitoring the temporal course of the reaction by 1H NMR, kinetic isotope effect studies, and control experiments. DFT calculations have been carried out using a dispersion-corrected range-separated hybrid functional (B97X-D) to explore the basic elementary steps of the catalytic cycle. The experimental results indicate that the reaction proceeds via two catalytic cycles. Cycle A, the dehydrogenation cycle, produces an enone intermediate. The dehydrogenation is assisted by N-methylindole, which acts as a ligand for Pd(II). The compu-tational studies agree with this conclusion, and identify the turnover-limiting step of the dehydrogenation step, which involves a change in the coordination mode of the -keto ester ligand from an O,O’-chelate to an C-bound Pd enolate. This ligand tautom-erization event is assisted by the -bound indole ligand. Subsequent scission of the ’-C–H bond takes place via a proton-assisted electron transfer mechanism, where Pd(II) acts as an electron sink and the trifluoroacetate ligand acts as a proton acceptor, to pro-duce the Pd(0) complex of the enone intermediate. The coupling is completed in cycle B, where the enone is coupled with indole. Pd(TFA)2 and TFA-catalyzed pathways were examined experimentally and computationally for this cycle, and both were found to be viable routes for the coupling step

    Effect of Fructooligosaccharide Metabolism on Chicken Colonization by an Extra-Intestinal Pathogenic Escherichia coli Strain

    Get PDF
    Extra-intestinal pathogenic Escherichia coli (ExPEC) strains cause many diseases in humans and animals. While remaining asymptomatic, they can colonize the intestine for subsequent extra-intestinal infection and dissemination in the environment. We have previously identified the fos locus, a gene cluster within a pathogenicity island of the avian ExPEC strain BEN2908, involved in the metabolism of short-chain fructooligosaccharides (scFOS). It is assumed that these sugars are metabolized by the probiotic bacteria of the microbiota present in the intestine, leading to a decrease in the pathogenic bacterial population. However, we have previously shown that scFOS metabolism helps BEN2908 to colonize the intestine, its reservoir. As the fos locus is located on a pathogenicity island, one aim of this study was to investigate a possible role of this locus in the virulence of the strain for chicken. We thus analysed fos gene expression in extracts of target organs of avian colibacillosis and performed a virulence assay in chickens. Moreover, in order to understand the involvement of the fos locus in intestinal colonization, we monitored the expression of fos genes and their implication in the growth ability of the strain in intestinal extracts of chicken. We also performed intestinal colonization assays in axenic and Specific Pathogen-Free (SPF) chickens. We demonstrated that the fos locus is not involved in the virulence of BEN2908 for chickens and is strongly involved in axenic chicken cecal colonization both in vitro and in vivo. However, even if the presence of a microbiota does not inhibit the growth advantage of BEN2908 in ceca in vitro, overall, growth of the strain is not favoured in the ceca of SPF chickens. These findings indicate that scFOS metabolism by an ExPEC strain can contribute to its fitness in ceca but this benefit is fully dependent on the bacteria present in the microbiota

    Biotechnology, material sciences and bone repair

    No full text

    La Madeleine : hospitalité et recueillement à travers différentes occupations (IXe–XVIIIe s.). Rapport final d’opération

    No full text
    Avec la collaboration de LoĂŻc Bertrand, J. Bouillon, D. Canny, B. Clavel, C. Halavant, S. Jesset, M. Philippe, A. Moiri

    La Madeleine : hospitalitĂ© et recueillement Ă  travers diffĂ©rentes occupations (IXe–XVIIIe s.). Rapport final d’opĂ©ration

    No full text
    Avec la collaboration de LoĂŻc Bertrand, J. Bouillon, D. Canny, B. Clavel, C. Halavant, S. Jesset, M. Philippe, A. Moiri
    • 

    corecore