5,309 research outputs found

    Double Exchange model for nanoscopic clusters

    Full text link
    We solve the double exchange model on nanoscopic clusters exactly, and specifically consider a six-site benzene-like nanocluster. This simple model is an ideal testbed for studying magnetism in nanoclusters and for validating approximations such as the dynamical mean field theory (DMFT). Non-local correlations arise between neighboring localized spins due to the Hund's rule coupling, favoring a short-range magnetic order of ferro- or antiferromagnetic type. For a geometry with more neighboring sites or a sufficiently strong hybridization between leads and the nanocluster, these non-local correlations are less relevant, and DMFT can be applied reliably.Comment: 9 pages, 9 figures, 1 tabl

    Whispering gallery modes in open quantum billiards

    Full text link
    The poles of the S-matrix and the wave functions of open 2D quantum billiards with convex boundary of different shape are calculated by the method of complex scaling. Two leads are attached to the cavities. The conductance of the cavities is calculated at energies with one, two and three open channels in each lead. Bands of overlapping resonance states appear which are localized along the convex boundary of the cavities and contribute coherently to the conductance. These bands correspond to the whispering gallery modes appearing in the classical calculations.Comment: 9 pages, 3 figures in jpg and gif forma

    Influence of branch points in the complex plane on the transmission through double quantum dots

    Full text link
    We consider single-channel transmission through a double quantum dot system consisting of two single dots that are connected by a wire and coupled each to one lead. The system is described in the framework of the S-matrix theory by using the effective Hamiltonian of the open quantum system. It consists of the Hamiltonian of the closed system (without attached leads) and a term that accounts for the coupling of the states via the continuum of propagating modes in the leads. This model allows to study the physical meaning of branch points in the complex plane. They are points of coalesced eigenvalues and separate the two scenarios with avoided level crossings and without any crossings in the complex plane. They influence strongly the features of transmission through double quantum dots.Comment: 30 pages, 14 figure

    Decreasing excitation gap in Andreev billiards by disorder scattering

    Full text link
    We investigate the distribution of the lowest-lying energy states in a disordered Andreev billiard by solving the Bogoliubov-de Gennes equation numerically. Contrary to conventional predictions we find a decrease rather than an increase of the excitation gap relative to its clean ballistic limit. We relate this finding to the eigenvalue spectrum of the Wigner-Smith time delay matrix between successive Andreev reflections. We show that the longest rather than the mean time delay determines the size of the excitation gap. With increasing disorder strength the values of the longest delay times increase, thereby, in turn, reducing the excitation gap.Comment: 6 pages, 5 figures, submitted to EP

    Constant-pressure sound waves in non-Hermitian disordered media

    Full text link
    When waves impinge on a disordered material they are back-scattered and form a highly complex interference pattern. Suppressing any such distortions in the free propagation of a wave is a challenging task with many applications in a number of different disciplines. In a recent theoretical proposal, it was pointed out that both perfect transmission through disorder as well as a complete suppression of any variation in a wave intensity can be achieved by adding a continuous gain-loss distribution to the disorder. Here we show that this abstract concept can be implemented in a realistic acoustic system. Our prototype consists of an acoustic waveguide containing several inclusions that scatter the incoming wave in a passive configuration and provide the gain or loss when being actively controlled. Our measurements on this non-Hermitian acoustic metamaterial demonstrate unambiguously the creation of a reflectionless scattering wave state that features a unique form of discrete constant-amplitude pressure waves. In addition to demonstrating that gain-loss additions can turn localised systems into transparent ones, we expect our proof-of-principle demonstration to trigger interesting new developments not only in sound engineering, but also in other related fields such as in non-Hermitian photonics

    New PbSnTe heterojunction laser diode structures with improved performance

    Get PDF
    Several recent advances in the state-of-the-art of lead tin telluride double heterojunction laser diodes are summarized. Continuous Wave operation to 120 K and pulsed operation to 166 K with single, lowest order transverse mode emission to in excess of four times threshold at 80 K were achieved in buried stripe lasers fabricated by liquid phase epitaxy in the lattice-matched system, lead-tin telluride-lead telluride selenide. At the same time, liquid phase epitaxy was used to produce PbSnTe distributed feedback lasers with much broader continuous single mode tuning ranges than are available from Fabry-Perot lasers. The physics and philosophy behind these advances is as important as the structures and performance of the specific devices embodying the advances, particularly since structures are continually being evolved and the performance continues to be improved

    Commensurate Itinerant Antiferromagnetism in BaFe2As2: 75As-NMR Studies on a Self-Flux Grown Single Crystal

    Full text link
    We report results of 75As nuclear magnetic resonance (NMR) experiments on a self-flux grown single crystal of BaFe2As2. A first-order antiferromagnetic (AF) transition near 135 K was detected by the splitting of NMR lines, which is accompanied by simultaneous structural transition as evidenced by a sudden large change of the electric field gradient tensor at the As site. The NMR results lead almost uniquely to the stripe spin structure in the AF phase. The data of spin-lattice relaxation rate indicate development of anisotropic spin fluctuations of the stripe-type with decreasing temperature in the paramagnetic phase.Comment: 7 pages, 7 figures, accepted for publication in J. Phys. Soc. Jp

    Breaking of PT-symmetry in bounded and unbounded scattering systems

    Full text link
    PT-symmetric scattering systems with balanced gain and loss can undergo a symmetry-breaking transition in which the eigenvalues of the non-unitary scattering matrix change their phase shifts from real to complex values. We relate the PT-symmetry breaking points of such an unbounded scattering system to those of underlying bounded systems. In particular, we show how the PT-thresholds in the scattering matrix of the unbounded system translate into analogous transitions in the Robin boundary conditions of the corresponding bounded systems. Based on this relation, we argue and then confirm that the PT-transitions in the scattering matrix are, under very general conditions, entirely insensitive to a variable coupling strength between the bounded region and the unbounded asymptotic region, a result that can be tested experimentally and visualized using the concept of Smith charts.Comment: 9 pages, 6 figures (final version, including newly added connection to the concept of "Smith charts"

    The brachistochrone problem in open quantum systems

    Full text link
    Recently, the quantum brachistochrone problem is discussed in the literature by using non-Hermitian Hamilton operators of different type. Here, it is demonstrated that the passage time is tunable in realistic open quantum systems due to the biorthogonality of the eigenfunctions of the non-Hermitian Hamilton operator. As an example, the numerical results obtained by Bulgakov et al. for the transmission through microwave cavities of different shape are analyzed from the point of view of the brachistochrone problem. The passage time is shortened in the crossover from the weak-coupling to the strong-coupling regime where the resonance states overlap and many branch points (exceptional points) in the complex plane exist. The effect can {\it not} be described in the framework of standard quantum mechanics with Hermitian Hamilton operator and consideration of SS matrix poles.Comment: 18 page
    corecore