458 research outputs found

    Voltage Drop

    Get PDF
    The white-clad form of a sailor clambered out of the after battery hatch, lingered restlessly for a moment; then peered down into the same open hatch..

    Propofol inhibits prokaryotic voltage-gated Na+ channels by promoting activation-coupled inactivation

    Get PDF
    Propofol is widely used in the clinic for the induction and maintenance of general anesthesia. As with most general anesthetics, however, our understanding of its mechanism of action remains incomplete. Local and general anesthetics largely inhibit voltage-gated Na+ channels (Navs) by inducing an apparent stabilization of the inactivated state, associated in some instances with pore block. To determine the biophysical and molecular basis of propofol action in Navs, we investigated NaChBac and NavMs, two prokaryotic Navs with distinct voltage dependencies and gating kinetics, by whole-cell patch clamp electrophysiology in the absence and presence of propofol at clinically relevant concentrations (2-10 μM). In both Navs, propofol induced a hyperpolarizing shift of the pre-pulse inactivation curve without any significant effects on recovery from inactivation at strongly hyperpolarized voltages, demonstrating that propofol does not stabilize the inactivated state. Moreover, there was no evidence of fast or slow pore block by propofol in a non-inactivating NaChBac mutant (T220A). Propofol also induced hyperpolarizing shifts of the conductance-voltage relationships with negligible effects on the time constants of deactivation at hyperpolarized voltages, indicating that propofol does not stabilize the open state. Instead, propofol decreases the time constants of macroscopic activation and inactivation. Adopting a kinetic scheme of Nav gating that assumes preferential closed-state recovery from inactivation, a 1.7-fold acceleration of the rate constant of activation and a 1.4-fold acceleration of the rate constant of inactivation were sufficient to reproduce experimental observations with computer simulations. In addition, molecular dynamics simulations and molecular docking suggest that propofol binding involves interactions with gating machinery in the S4-S5 linker and external pore regions. Our findings show that propofol is primarily a positive gating modulator of prokaryotic Navs, which ultimately inhibits the channels by promoting activation-coupled inactivation. © 2018 Yang et al

    EGASP: Introduction

    Get PDF

    Mechanistic Insights into the Modulation of Voltage-Gated Ion Channels by Inhalational Anesthetics

    Get PDF
    AbstractGeneral anesthesia is a relatively safe medical procedure, which for nearly 170 years has allowed life saving surgical interventions in animals and people. However, the molecular mechanism of general anesthesia continues to be a matter of importance and debate. A favored hypothesis proposes that general anesthesia results from direct multisite interactions with multiple and diverse ion channels in the brain. Neurotransmitter-gated ion channels and two-pore K+ channels are key players in the mechanism of anesthesia; however, new studies have also implicated voltage-gated ion channels. Recent biophysical and structural studies of Na+ and K+ channels strongly suggest that halogenated inhalational general anesthetics interact with gates and pore regions of these ion channels to modulate function. Here, we review these studies and provide a perspective to stimulate further advances

    Molecular Recognition of Ketamine by a Subset of Olfactory G Protein–coupled Receptors

    Get PDF
    Ketamine elicits various neuropharmacological effects, including sedation, analgesia, general anesthesia, and antidepressant activity. Through an in vitro screen, we identified four mouse olfactory receptors (ORs) that responded to ketamine. In addition to their presence in the olfactory epithelium, these G protein (heterotrimeric guanine nucleotide–binding protein)–coupled receptors (GPCRs) are distributed throughout the central nervous system. To better understand the molecular basis of the interactions between ketamine and ORs, we used sequence comparison and molecular modeling to design mutations that (i) increased, reduced, or abolished ketamine responsiveness in responding receptors, and (ii) rendered non-responding receptors responsive to ketamine. We showed that olfactory sensory neurons (OSNs) that expressed distinct ORs responded to ketamine in vivo, suggesting that ORs may serve as functional targets for ketamine. The ability to both abolish and introduce responsiveness to ketamine in GPCRs enabled us to identify and confirm distinct interaction loci in the binding site, which suggested a signature ketamine-binding pocket that may guide exploration of additional receptors for this general anesthetic drug

    Propofol inhibits the voltage-gated sodium channel NaChBac at multiple sites.

    Get PDF
    Voltage-gated sodium (NaV) channels are important targets of general anesthetics, including the intravenous anesthetic propofol. Electrophysiology studies on the prokaryotic NaV channel NaChBac have demonstrated that propofol promotes channel activation and accelerates activation-coupled inactivation, but the molecular mechanisms of these effects are unclear. Here, guided by computational docking and molecular dynamics simulations, we predict several propofol-binding sites in NaChBac. We then strategically place small fluorinated probes at these putative binding sites and experimentally quantify the interaction strengths with a fluorinated propofol analogue, 4-fluoropropofol. In vitro and in vivo measurements show that 4-fluoropropofol and propofol have similar effects on NaChBac function and nearly identical anesthetizing effects on tadpole mobility. Using quantitative analysis by 19F-NMR saturation transfer difference spectroscopy, we reveal strong intermolecular cross-relaxation rate constants between 4-fluoropropofol and four different regions of NaChBac, including the activation gate and selectivity filter in the pore, the voltage sensing domain, and the S4-S5 linker. Unlike volatile anesthetics, 4-fluoropropofol does not bind to the extracellular interface of the pore domain. Collectively, our results show that propofol inhibits NaChBac at multiple sites, likely with distinct modes of action. This study provides a molecular basis for understanding the net inhibitory action of propofol on NaV channels. © 2018 Wang et al

    m-Azipropofol (AziPm) a Photoactive Analogue of the Intravenous General Anesthetic Propofol

    Get PDF
    Propofol is the most commonly used sedative-hypnotic drug for noxious procedures, yet the molecular targets underlying either its beneficial or toxic effects remain uncertain. In order to determine targets and thereby mechanisms of propofol, we have synthesized a photoactivateable analogue by substituting an alkyldiazirinyl moiety for one of the isopropyl arms but in the meta position. m-Azipropofol retains the physical, biochemical, GABAA receptor modulatory, and in vivo activity of propofol and photoadducts to amino acid residues in known propofol binding sites in natural proteins. Using either mass spectrometry or radiolabeling, this reagent may be used to reveal sites and targets that underlie the mechanism of both the desirable and undesirable actions of this important clinical compound
    • …
    corecore