115 research outputs found

    Chromosome stability of callus cultures of Crocus sativus

    Get PDF
    Two year old canus cultures, raised from corm explants of Crocus sativus, showed an unusual chromosome number stability when maintained on MS medium supplemented with 2,4-D (2 mg/l) and kinetin (0.5 mg/l). Such studies may give an insight into the po·ssible origin of somaclonal variants. &nbsp

    Fast DNA translocation through a solid-state nanopore

    Full text link
    We report translocation experiments on double-strand DNA through a silicon oxide nanopore. Samples containing DNA fragments with seven different lengths between 2000 to 96000 basepairs have been electrophoretically driven through a 10 nm pore. We find a power-law scaling of the translocation time versus length, with an exponent of 1.26 ±\pm 0.07. This behavior is qualitatively different from the linear behavior observed in similar experiments performed with protein pores. We address the observed nonlinear scaling in a theoretical model that describes experiments where hydrodynamic drag on the section of the polymer outside the pore is the dominant force counteracting the driving. We show that this is the case in our experiments and derive a power-law scaling with an exponent of 1.18, in excellent agreement with our data.Comment: 5 pages, 2 figures. Submitted to PR

    Transverse electric field dragging of DNA in a nanochannel

    Get PDF
    Nanopore analysis is an emerging single-molecule strategy for non-optical and high-throughput DNA sequencing, the principle of which is based on identification of each constituent nucleobase by measuring trans-membrane ionic current blockade or transverse tunnelling current as it moves through the pore. A crucial issue for nanopore sequencing is the fact that DNA translocates a nanopore too fast for addressing sequence with a single base resolution. Here we report that a transverse electric field can be used to slow down the translocation. We find 400-fold decrease in the DNA translocation speed by adding a transverse field of 10 mV/nm in a gold-electrode-embedded silicon dioxide channel. The retarded flow allowed us to map the local folding pattern in individual DNA from trans-pore ionic current profiles. This field dragging approach may provide a new way to control the polynucleotide translocation kinetics

    Lysine120 Interactions with p53 Response Elements can Allosterically Direct p53 Organization

    Get PDF
    p53 can serve as a paradigm in studies aiming to figure out how allosteric perturbations in transcription factors (TFs) triggered by small changes in DNA response element (RE) sequences, can spell selectivity in co-factor recruitment. p53-REs are 20-base pair (bp) DNA segments specifying diverse functions. They may be located near the transcription start sites or thousands of bps away in the genome. Their number has been estimated to be in the thousands, and they all share a common motif. A key question is then how does the p53 protein recognize a particular p53-RE sequence among all the similar ones? Here, representative p53-REs regulating diverse functions including cell cycle arrest, DNA repair, and apoptosis were simulated in explicit solvent. Among the major interactions between p53 and its REs involving Lys120, Arg280 and Arg248, the bps interacting with Lys120 vary while the interacting partners of other residues are less so. We observe that each p53-RE quarter site sequence has a unique pattern of interactions with p53 Lys120. The allosteric, DNA sequence-induced conformational and dynamic changes of the altered Lys120 interactions are amplified by the perturbation of other p53-DNA interactions. The combined subtle RE sequence-specific allosteric effects propagate in the p53 and in the DNA. The resulting amplified allosteric effects far away are reflected in changes in the overall p53 organization and in the p53 surface topology and residue fluctuations which play key roles in selective co-factor recruitment. As such, these observations suggest how similar p53-RE sequences can spell the preferred co-factor binding, which is the key to the selective gene transactivation and consequently different functional effects

    The Role of Response Elements Organization in Transcription Factor Selectivity: The IFN-β Enhanceosome Example

    Get PDF
    What is the mechanism through which transcription factors (TFs) assemble specifically along the enhancer DNA? The IFN-β enhanceosome provides a good model system: it is small; its components' crystal structures are available; and there are biochemical and cellular data. In the IFN-β enhanceosome, there are few protein-protein interactions even though consecutive DNA response elements (REs) overlap. Our molecular dynamics (MD) simulations on different motif combinations from the enhanceosome illustrate that cooperativity is achieved via unique organization of the REs: specific binding of one TF can enhance the binding of another TF to a neighboring RE and restrict others, through overlap of REs; the order of the REs can determine which complexes will form; and the alternation of consensus and non-consensus REs can regulate binding specificity by optimizing the interactions among partners. Our observations offer an explanation of how specificity and cooperativity can be attained despite the limited interactions between neighboring TFs on the enhancer DNA. To date, when addressing selective TF binding, attention has largely focused on RE sequences. Yet, the order of the REs on the DNA and the length of the spacers between them can be a key factor in specific combinatorial assembly of the TFs on the enhancer and thus in function. Our results emphasize cooperativity via RE binding sites organization

    25 Years of IIF Time Series Forecasting: A Selective Review

    Full text link
    • …
    corecore