10,768 research outputs found

    High-Precision Optical Measurement of the 2S Hyperfine Interval in Atomic Hydrogen

    Full text link
    We have applied an optical method to the measurement of the 2S hyperfine interval in atomic hydrogen. The interval has been measured by means of two-photon spectroscopy of the 1S-2S transition on a hydrogen atomic beam shielded from external magnetic fields. The measured value of the 2S hyperfine interval is equal to 177 556 860(15) Hz and represents the most precise measurement of this interval to date. The theoretical evaluation of the specific combination of 1S and 2S hyperfine intervals D_21 is in moderately good agreement with the value for D_21 deduced from our measurement

    Bayesian evaluation of the southern hemisphere radiocarbon offset during the holocene

    Get PDF
    While an interhemispheric offset in atmospheric radiocarbon levels from AD 1950–950 is now well established, its existence earlier in the Holocene is less clear, with some studies reporting globally uniform 14C levels while others finding Southern Hemisphere samples older by a few decades. In this paper, we present a method for wiggle-matching Southern Hemisphere data sets against Northern Hemisphere curves, using the Bayesian calibration program OxCal 4.1 with the Reservoir Offset function accommodating a potential interhemispheric offset. The accuracy and robustness of this approach is confirmed by wiggle-matching known-calendar age sequences of the Southern Hemisphere calibration curve SHCal04 against the Northern Hemisphere curve IntCal04. We also show that 5 of 9 Holocene Southern Hemisphere data sets are capable of yielding reliable offset information. Those data sets that are accurate and precise show that interhemispheric offset levels in the Early Holocene are similar to modern levels, confirming SHCal04 as the curve of choice for calibrating Southern Hemisphere samples

    Tools made of ice facilitate forming of soft, sticky materials

    Get PDF
    Tools made of ice facilitate the forming or shaping of materials that are soft and sticky in the uncured state. The low-temperature of the ice slows the curing of the material, extending the working time available before setup. Handling problems are eliminated because the material does not adhere to the tool, and the melting ice serves as a lubricant

    Revised calendar date for the Taupo eruption derived by ¹⁴C wiggle-matching using a New Zealand kauri ¹⁴C calibration data set

    Get PDF
    Taupo volcano in central North Island, New Zealand, is the most frequently active and productive rhyolite volcano on Earth. Its latest explosive activity about 1800 years ago generated the spectacular Taupo eruption, the most violent eruption known in the world in the last 5000 years. We present here a new accurate and precise eruption date of AD 232 ± 5 (1718 ± 5 cal. BP) for the Taupo event. This date was derived by wiggle-matching 25 high-precision ¹⁴C dates from decadal samples of Phyllocladus trichomanoides from the Pureora buried forest near Lake Taupo against the high-precision, first-millennium AD subfossil Agathis australis (kauri) calibration data set constructed by the Waikato Radiocarbon Laboratory. It shows that postulated dates for the eruption estimated previously from Greenland ice-core records (AD 181 ± 2) and putative historical records of unusual atmospheric phenomena in ancient Rome and China (c. AD 186) are both untenable. However, although their conclusion of a zero north–south ¹⁴C offset is erroneous, and their data exhibit a laboratory bias of about 38 years (too young), Sparks et al. (Sparks RJ, Melhuish WH, McKee JWA, Ogden J, Palmer JG and Molloy BPJ (1995) ¹⁴C calibration in the Southern Hemisphere and the date of the last Taupo eruption: Evidence from tree-ring sequences. Radiocarbon 37: 155–163) correctly utilized the Northern Hemisphere calibration curve of Stuiver and Becker (Stuiver M and Becker B (1993) High-precision decadal calibration of the radiocarbon timescale, AD 1950–6000 BC. Radiocarbon 35: 35–65) to obtain an accurate wiggle-match date for the eruption identical to ours but less precise (AD 232 ± 15). Our results demonstrate that high-agreement levels, indicated by either agreement indices or χ² data, obtained from a ¹⁴C wiggle-match do not necessarily mean that age models are accurate. We also show that laboratory bias, if suspected, can be mitigated by applying the reservoir offset function with an appropriate error value (e.g. 0 ± 40 years). Ages for eruptives such as Taupo tephra that are based upon individual ¹⁴C dates should be considered as approximate only, and confined ideally to short-lived material (e.g. seeds, leaves, small branches or the outer rings of larger trees)

    Pilot cryo tunnel: Attachments, seals, and insulation

    Get PDF
    Several different tests are described which simulated the actual configuration of a cryogenic wind tunnel operating at pressures up to 5 atmospheres (507 kPa) and temperatures from -320 F (78K) to 120 F (322K) in order to determine compatible bolting, adequate sealing, and effective insulating materials. The evaluation of flange attachments (continuous threaded studs) considered bolting based on compatible flanges, attachment materials, and prescribed bolt elongations. Various types of seals and seal configurations were studied to determine suitability and reusability under the imposed pressure and temperature loadings. The temperature profile was established for several materials used for structural supports

    Fabrication of Nano-Gapped Single-Electron Transistors for Transport Studies of Individual Single-Molecule Magnets

    Get PDF
    Three terminal single-electron transistor devices utilizing Al/Al2O3 gate electrodes were developed for the study of electron transport through individual single-molecule magnets. The devices were patterned via multiple layers of optical and electron beam lithography. Electromigration induced breaking of the nanowires reliably produces 1-3 nm gaps between which the SMM can be situated. Conductance through a single Mn12(3-thiophenecarboxylate) displays the coulomb blockade effect with several excitations within +/- 40 meV.Comment: 10 pages, 5 figure

    Electroweak Beautygenesis: From b {\to} s CP-violation to the Cosmic Baryon Asymmetry

    Get PDF
    We address the possibility that CP-violation in BsBˉsB_s-\bar B_s mixing may help explain the origin of the cosmic baryon asymmetry. We propose a new baryogenesis mechanism - "Electroweak Beautygenesis" - explicitly showing that these two CP-violating phenomena can be sourced by a common CP-phase. As an illustration, we work in the Two-Higgs-Doublet model. Because the relevant CP-phase is flavor off-diagonal, this mechanism is less severely constrained by null results of electric dipole moment searches than other scenarios. We show how measurements of flavor observables by the D0, CDF, and LHCb collaborations test this scenario.Comment: 4 pages, 1 figure, 1 tabl
    corecore