24,885 research outputs found
Approximate density-effect correction for the ionization loss of charged particles
Approximate density-effect correction for ionization loss of charged particle
An estimate of the prompt photon spectrum arising from cosmic-ray bombardment of the moon
Calculation method for estimating photon leakage spectrum arising from cosmic ray bombardment of moo
Monte Carlo calculations of high energy nucleon meson cascades and applications to galactic cosmic ray transport
Results obtained using a recently developed calculational method for determining the nucleon-meson cascade induced in thick materials by high-energy nucleons and charged pions are presented. The calculational method uses the intranuclear-cascade-evaporation model to treat nonelastic collisions by particles with energies approximately or smaller than GeV and an extrapolation model at higher energies. The following configurations are considered: (1) 19.2-GeV/c protons incident on iron; (2) 30.3-GeV/c protons incident on iron; (3) solar and galactic protons incident on the moon, and (4) galactic protons incident on tissue. For the first three configurations, experimental results are available and comparisons between the experimental and calculated results are given
Transitions to Nematic states in homogeneous suspensions of high aspect ratio magnetic rods
Isotropic-Nematic and Nematic-Nematic transitions from a homogeneous base
state of a suspension of high aspect ratio, rod-like magnetic particles are
studied for both Maier-Saupe and the Onsager excluded volume potentials. A
combination of classical linear stability and asymptotic analyses provides
insight into possible nematic states emanating from both the isotropic and
nematic non-polarized equilibrium states. Local analytical results close to
critical points in conjunction with global numerical results (Bhandar, 2002)
yields a unified picture of the bifurcation diagram and provides a convenient
base state to study effects of external orienting fields.Comment: 3 Figure
Measurement of the hyperfine structure of the S1/2-D5/2 transition in 43Ca+
The hyperfine structure of the S1/2-D5/2 quadrupole transition at 729 nm in
43Ca+ has been investigated by laser spectroscopy using a single trapped 43Ca+
ion. We determine the hyperfine structure constants of the metastable level as
A=-3.8931(2) MHz and B=-4.241(4) MHz. The isotope shift of the transition with
respect to 40Ca+ was measured to be 4134.713(5) MHz. We demonstrate the
existence of transitions that become independent of the first-order Zeeman
shift at non-zero low magnetic fields. These transitions might be better suited
for building a frequency standard than the well-known 'clock transitions'
between m=0 levels at zero magnetic field.Comment: corrected for sign errors in the hyperfine constants. No corrections
to were made to the data analysi
Analysis and testing of two-dimensional vented Coanda ejectors with asymmetric variable area mixing sections
The analysis of asymmetric, curved (Coanda) ejector flow has been completed using a finite difference technique and a quasi-orthogonal streamline coordinate system. The boundary layer type jet mixing analysis accounts for the effect of streamline curvature in pressure gradients normal to the streamlines and on eddy viscosities. The analysis assured perfect gases, free of pressure discontinuities and flow separation and treated three compound flows of supersonic and subsonic streams. Flow parameters and ejector performance were measured in a vented Coanda flow geometry for the verification of the computer analysis. A primary converging nozzle with a discharge geometry of 0.003175 m x 0.2032 m was supplied with 0.283 cu m/sec of air at about 241.3 KPa absolute stagnation pressure and 82 C stagnation temperature. One mixing section geometry was used with a 0.127 m constant radius Coanda surface. Eight tests were run at spacing between the Coanda surface and primary nozzle 0.01915 m and 0.318 m and at three angles of Coanda turning: 22.5 deg, 45.0 deg, and 75.0 deg. The wall static pressures, the loci of maximum stagnation pressures, and the stagnation pressure profiles agree well between analytical and experimental results
Recommended from our members
Storm Damage Assessment for the January 1988 Storm Along the Southern California Shoreline
Elimination of Clock Jitter Noise in Spaceborn Laser Interferometers
Space gravitational wave detectors employing laser interferometry between
free-flying spacecraft differ in many ways from their laboratory counterparts.
Among these differences is the fact that, in space, the end-masses will be
moving relative to each other. This creates a problem by inducing a Doppler
shift between the incoming and outgoing frequencies. The resulting beat
frequency is so high that its phase cannot be read to sufficient accuracy when
referenced to state-of-the-art space-qualified clocks. This is the problem that
is addressed in this paper. We introduce a set of time-domain algorithms in
which the effects of clock jitter are exactly canceled. The method employs the
two-color laser approach that has been previously proposed, but avoids the
singularities that arise in the previous frequency-domain algorithms. In
addition, several practical aspects of the laser and clock noise cancellation
schemes are addressed.Comment: 20 pages, 5 figure
Convexity criteria and uniqueness of absolutely minimizing functions
We show that absolutely minimizing functions relative to a convex Hamiltonian
are uniquely determined by their boundary
values under minimal assumptions on Along the way, we extend the known
equivalences between comparison with cones, convexity criteria, and absolutely
minimizing properties, to this generality. These results perfect a long
development in the uniqueness/existence theory of the archetypal problem of the
calculus of variations in Comment: 34 page
- …