591 research outputs found
Laboratory Evaluation of Two Bioenergetics Models for Brown Trout
Laboratory growth and food consumption data for two size classes of brown trout Salmo trutta that experienced three distinct feeding regimes at two temperatures were used to evaluate the abilities of two bioenergetics models to predict fish growth. Accuracy of cumulative consumption predictions was also tested for one of the models. Model errors for predicting relative growth rate of individual fish were regressed on observed mean daily consumption rate to assess whether consumption-dependent prediction error commonly observed in bioenergetics models for other fish species was exhibited by the two brown trout bioenergetics models. Both models yielded unbiased estimates of brown trout growth that were within 1-12% of observed values across the range of fish sizes, water temperatures, and ration levels tested. Bonferroni joint 95% confidence intervals for the slopes and intercepts of regressions of predicted final weight on observed final weight included a slope of 1 and a y-intercept of 0 for both models. No significant inter-model differences in percent error for predicting final weight of fish in feeding trials were observed. Predicted cumulative consumption values were within 8-15% of corresponding observed values. Neither model exhibited significant consumption-dependent error for predicting brown trout growth, in contrast to results of several previous laboratory evaluations of bioenergetics models for other fish species. Absence of consumption-dependent error in the two brown trout models may be due to incorporation of feeding rate-dependence of egestion and excretion in these models and that egestion and excretion parameters were not borrowed from other species. Results of this evaluation corroborate the utility of these bioenergetics models for predicting growth and consumption for brown trout under the range of fish sizes, water temperatures, and ration levels tested
The SARIFA biomarker in the context of basic research of lipid-driven cancers
Abstract SARIFA was very recently introduced as a histomorphological biomarker with strong prognostic power for colorectal, gastric, prostate, and pancreatic cancer. It is characterized by the direct contact between tumor cells and adipocytes due to a lack of stromal reaction. This can be easily evaluated on routinely available H&E-slides with high interobserver agreement. SARIFA also reflects a specific tumor biology driven by metabolic reprogramming. Tumor cells in SARIFA-positive tumors benefit from direct interaction with adipocytes as an external source of lipids. Numerous studies have shown that lipid metabolism is crucial in carcinogenesis and cancer progression. We found that the interaction between tumor cells and adipocytes was not triggered by obesity, as previously assumed. Instead, we believe that this is due to an immunological mechanism. Knowledge about lipid metabolism in cancer from basic experiments can be transferred to develop strategies targeting this reprogramed metabolism
Changes to water quality and sediment phosphorus forms in a shallow, eutrophic lake after removal of common carp (Cyprinus carpio)
Pickerel Lake (Minnesota, USA) is a shallow, polymictic lake that has had eutrophication problems for decades. Although excess nutrient loading has been a problem in the past, the dominance of common carp (Cyprinus carpio) was considered to be a substantial factor driving and sustaining eutrophic conditions. To remove carp and restore the fish community, the lake was treated with rotenone in late 2009 and then restocked with native species. All water quality variables improved after carp removal, with mean values (May-Sep) for chlorophyll a, total phosphorus, and turbidity decreasing by 80% to 93% and Secchi disk transparency increasing nearly 600% when comparing means of pre- to post-treatment years. Macrophyte coverage also improved, from means of 4.6% before treatment to 90% after treatment, indicating a shift from an algal- to a macrophyte-dominated system. Sediment phosphorus (P) storage increased significantly after carp removal as well, with labile (releasable) forms of P increasing in the upper 10 cm of sediment in all cores (n = 7). The decrease in water column P equaled the increase in labile sediment P forms after treatment, indicating carp were a key driver of P transport from sediment to water. The results of this study indicate that an ecological (i.e., both abiotic and biotic) approach is needed when managing eutrophic lakes because management of nutrients alone will not likely be adequate to restore water quality in systems dominated by carp or other large benthic feeding fish
Second-Harmonic and Sum-Frequency Imaging of Organic Nanocrystals with Photon Scanning Tunneling Microscope
Second-harmonic generation and sum-frequency generation with photon scanning tunneling microscopy and shear-force detection are used to map the nonlinear optical response and the surface topograph of N-(4-nitrophenyl)-(L)-prolinol crystals with a subdiffraction-limited resolution. The domain-size dependence of the spatial feature is obtained, which shows the local orientational distribution of the optical near field radiated by nonlinear nanocrystals and reveals the difference between nanoscopic and macroscopic second-order optical nonlinearities of molecular crystals
Asteroids seen by JWST-MIRI: Radiometric size, distance, and orbit constraints
Infrared measurements of asteroids are crucial for the determination of physical and thermal properties of individual objects, and for understanding the small-body populations in the solar system as a whole. However, standard radiometric methods can only be applied if the orbit of an object is known, hence its position at the time of the observation. With JWST-MIRI observations the situation will change and many unknown, often very small, solar system objects will be detected. Later orbit determinations are difficult due to the faintness of the objects and the lack of dedicated follow-up concepts. We present MIRI observations of the outer-belt asteroid (10920) 1998 BC1 and an unknown object, detected in all nine MIRI bands in close apparent proximity to (10920). We developed a new method called STM-ORBIT to interpret the multi-band measurements without knowing the object’s true location. The power of the new technique is that it determines the most-likely heliocentric and observer-centric distance and phase angle ranges, allowing us to make a radiometric size estimate. The application to the MIRI fluxes of (10920) was used to validate the method. It leads to a confirmation of the known radiometric size-albedo solution, and puts constraints on the asteroid’s location and orbit in agreement with its true orbit. To back up the validation of the method, we obtained additional ground-based light curve observations of (10920), combined with Gaia data, which indicate a very elongated object (a/b ≥ 1.5), with a spin-pole at (λ, β)ecl = (178°, +81°), with an estimated error of about 20°, and a rotation period of 4.861191 ± 0.000015 h. A thermophysical study of all available JWST-MIRI and WISE measurements leads to a size of 14.5–16.5 km (diameter of an equal-volume sphere), a geometric albedo pV between 0.05 and 0.10, and a thermal inertia in the range 9–35 (best value 15) J m−2 s−0.5 K−1. For the newly discovered MIRI object, the STM-ORBIT method revealed a size of 100–230 m. The new asteroid must be on a low-inclination orbit (0.7° < i < 2.0°) and it was located in the inner main-belt region during JWST observations. A beaming parameter η larger than 1.0 would push the size even below 100 meters, a main-belt regime that has escaped IR detections so far. This kind of MIRI observations can therefore contribute to formation and evolution studies via classical size-frequency studies, which are currently limited to objects larger than about one kilometer in size. We estimate that MIRI frames with pointings close to the ecliptic and short integration times of only a few seconds will always include a few asteroids; most of them will be unknown objects.TSR acknowledges funding from the NEO-MAPP project (H2020-EU-2-1-6/870377). This work was (partially) funded by the Spanish MICIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe” by the European Union through grant RTI2018-095076-B-C21, and the Institute of Cosmos Sciences University of Barcelona (ICCUB, Unidad de Excelencia ‘María de Maeztu’) through grant CEX2019-000918-M. PPB acknowledges funding through the Spanish Government retraining plan ‘María Zambrano 2021-2023’ at the University of Alicante (ZAMBRANO22-04)
Improvement of Bioenergetics Model Predictions for Fish Undergoing Compensatory Growth
A previous evaluation of a bioenergetics model applied to juvenile hybrid sunfish (F1 hybrid of female green sunfish Lepomis cyanellus × male bluegill L. macrochirus) undergoing compensatory growth (CG) indicated that the model substantially overestimated growth and underestimated cumulative consumption. This result suggested that fish bioenergetics models might not adequately account for physiological shifts that occur during CG. However, we demonstrate that application of a recently developed procedure for correcting consumption- and growth-rate-dependent systematic errors common among bioenergetics models negates much of the predictive error that had been attributed to the physiological complexities of CG. Correction equations for estimating the model-relative growth rate error (predicted less observed; g · g−1 · d−1) from the observed mean daily consumption rate (g · g−1 · d−1) and the consumption rate error (predicted less observed; g · g−1 · d−1) from the observed relative growth rate (g · g−1 · d−1) were derived by applying linear regression analysis to data from individual hybrid sunfish not undergoing CG. These independently generated correction equations significantly improved model predictions of growth and cumulative consumption for three groups of fish undergoing CG at one temperature near their growth optimum. The findings indicate that the high consumption and growth rates characteristic of fish undergoing CG merely amplify the consumption- and growth-rate-dependent errors inherent in bioenergetics models and that model predictions for fish undergoing CG can be significantly improved through application of the correction procedure
DNA-Ormocer based biocomposite for fabrication of photonic structures
We report microfabrication of high quality photonicstructures such as two-dimensional photonic crystals and beam splitters from a high DNA load, photosensitive Ormocer nanocomposite. This nanocomposite combines the high dye loading capacity of DNA with the photopatternability and hardness of the Ormocer. The fabrication is performed with the two-photon lithography method. Detailed studies of the deoxyribonucleic acid distribution in the fabricatedstructures are conducted with Raman microscopy. We also demonstrate that the deoxyribonucleic acid based nanocomposite films cast on glass substrates are of high enough quality to support amplified spontaneous emission from dyes intercalated in the deoxyribonucleic acid
The concept of Stroma AReactive Invasion Front Areas (SARIFA) as a new prognostic biomarker for lipid-driven cancers holds true in pancreatic ductal adenocarcinoma
Background
Pancreatic ductal adenocarcinoma (PDAC) is a ‘difficult-to-treat’ entity. To forecast its prognosis, we introduced a new biomarker, SARIFA (stroma areactive invasion front areas), which are areas at the tumour invasion front lacking desmoplastic stroma reaction upon malignant invasion in the surrounding tissue, leading to direct contact between tumour cells and adipocytes. SARIFA showed its significance in gastric and colorectal carcinoma, revealing lipid metabolism alternations that promote tumour progression.
Methods
We reviewed the SARIFA status of 166 PDAC cases on all available H&E-stained tumour slides from archival Whipple-resection specimens. SARIFA positivity was defined as SARIFA detection in at least 66% of the available slides. To investigate alterations in tumour metabolism and microenvironment, we performed immunohistochemical staining for FABP4, CD36 and CD68. To verify and quantify a supposed delipidation of adipocytes, adipose tissue was digitally morphometrised.
Results
In total, 53 cases (32%) were classified as SARIFA positive and 113 (68%) as SARIFA negative. Patients with SARIFA-positive PDAC showed a significantly worse overall survival compared with SARIFA-negative cases (median overall survival: 11.0 months vs. 22.0 months, HR: 1.570 (1.082–2.278), 95% CI, p = 0.018), which was independent from other prognostic markers (p = 0.014). At the invasion front of SARIFA-positive PDAC, we observed significantly higher expression of FABP4 (p < 0.0001) and higher concentrations of CD68+ macrophages (p = 0.031) related to a higher risk of tumour progression. CD36 staining showed no significant expression differences. The adipocyte areas at the invasion front were significantly smaller, with mean values of 4021 ± 1058 µm2 and 1812 ± 1008 µm2 for the SARIFA-negative and -positive cases, respectively (p < 0.001).
Conclusions
SARIFA is a promising prognostic biomarker for PDAC. Its assessment is characterised by simplicity and low effort. The mechanisms behind SARIFA suggest a tumour-promoting increased lipid metabolism and altered immune background, both showing new therapeutic avenues
- …