848 research outputs found
Sea turtle nesting in the Ten Thousand Islands of Florida
Loggerhead sea turtles (Caretta caretta) nest in numerous substrate and beach
types within the Ten Thousand Islands (TTl) of southwest Florida. Nesting beach
selection was analyzed on 12 islands within this archipelago. Numerous physical
characteristics were recorded to identify the relatedness of these variables and determine
their importance for nesting beach selection in C. caretta. These variables were chosen
after evaluating the islands, conducting literature searches and soliciting personal
communications. Along transects, data were collected, on the following: height of
canopy, beach width, overall slope (beach slope and slope of offshore approach) and sand
samples analyzed for pH, percentage of water, percentage of organic content, percentage
of carbonate and particle size (8 size classes). Data on ordinal aspect of beaches and
beach length were also recorded and included in the analysis. All of the variables were
analyzed by tree regression, incorporating the nesting data into the analysis. In the TTl,
loggerheads appear to prefer wider beaches (p< 0.001; R2
= 0.56) that inherently have less
slope, and secondarily, wider beaches that have low amounts of carbonate (p< O.00 1). In
addition, C. caretta favors nest sites within or in close proximity to the supra-littoral
vegetation zone of beaches in the TTl (p< 0.001). (86 page document
Finite bias visibility of the electronic Mach-Zehnder interferometer
We present an original statistical method to measure the visibility of
interferences in an electronic Mach-Zehnder interferometer in the presence of
low frequency fluctuations. The visibility presents a single side lobe
structure shown to result from a gaussian phase averaging whose variance is
quadratic with the bias. To reinforce our approach and validate our statistical
method, the same experiment is also realized with a stable sample. It exhibits
the same visibility behavior as the fluctuating one, indicating the intrinsic
character of finite bias phase averaging. In both samples, the dilution of the
impinging current reduces the variance of the gaussian distribution.Comment: 4 pages, 5 figure
Noise dephasing in the edge states of the Integer Quantum Hall regime
An electronic Mach Zehnder interferometer is used in the integer quantum hall
regime at filling factor 2, to study the dephasing of the interferences. This
is found to be induced by the electrical noise existing in the edge states
capacitively coupled to each others. Electrical shot noise created in one
channel leads to phase randomization in the other, which destroys the
interference pattern. These findings are extended to the dephasing induced by
thermal noise instead of shot noise: it explains the underlying mechanism
responsible for the finite temperature coherence time of the
edge states at filling factor 2, measured in a recent experiment. Finally, we
present here a theory of the dephasing based on Gaussian noise, which is found
in excellent agreement with our experimental results.Comment: ~4 pages, 4 figure
Quantum coherence engineering in the integer quantum Hall regime
We present an experiment where the quantum coherence in the edge states of
the integer quantum Hall regime is tuned with a decoupling gate. The coherence
length is determined by measuring the visibility of quantum interferences in a
Mach-Zehnder interferometer as a function of temperature, in the quantum Hall
regime at filling factor two. The temperature dependence of the coherence
length can be varied by a factor of two. The strengthening of the phase
coherence at finite temperature is shown to arise from a reduction of the
coupling between co-propagating edge states. This opens the way for a strong
improvement of the phase coherence of Quantum Hall systems. The decoupling gate
also allows us to investigate how inter-edge state coupling influence the
quantum interferences' dependence on the injection bias. We find that the
finite bias visibility can be decomposed into two contributions: a Gaussian
envelop which is surprisingly insensitive to the coupling, and a beating
component which, on the contrary, is strongly affected by the coupling.Comment: 4 pages, 5 figure
Frequency shifts of photoassociative spectra of ultracold metastable Helium atoms : a new measurement of the s-wave scattering length
We observe light-induced frequency shifts in one-color photoassociative
spectra of magnetically trapped He atoms in the metastable
state. A pair of ultracold spin-polarized helium atoms is excited into
a molecular bound state in the purely long range potential connected to
the asymptote. The shift arises from the optical coupling of
the molecular excited bound state with the scattering states and the bound
states of two colliding atoms. We measure the frequency-shifts for
several ro-vibrational levels in the potential and find a linear
dependence on the photoassociation laser intensity. Comparison with a
theoretical analysis provides a good indication for the s-wave scattering
length of the quintet () potential, nm, which
is significantly lower than most previous results obtained by non-spectroscopic
methods.Comment: 7 pages, 4 figure
Tuning decoherence with a voltage probe
We present an experiment where we tune the decoherence in a quantum
interferometer using one of the simplest object available in the physic of
quantum conductors : an ohmic contact. For that purpose, we designed an
electronic Mach-Zehnder interferometer which has one of its two arms connected
to an ohmic contact through a quantum point contact. At low temperature, we
observe quantum interference patterns with a visibility up to 57%. Increasing
the connection between one arm of the interferometer to the floating ohmic
contact, the voltage probe, reduces quantum interferences as it probes the
electron trajectory. This unique experimental realization of a voltage probe
works as a trivial which-path detector whose efficiency can be simply tuned by
a gate voltage
Experimental Test of the High-Frequency Quantum Shot Noise Theory in a Quantum Point Contact
We report on direct measurements of the electronic shot noise of a quantum
point contact at frequencies nu in the range 4-8 GHz. The very small energy
scale used ensures energy independent transmissions of the few transmitted
electronic modes and their accurate knowledge. Both the thermal energy and the
quantum point contact drain-source voltage Vds are comparable to the photon
energy hnu leading to observation of the shot noise suppression when
. Our measurements provide the first complete test of the finite
frequency shot noise scattering theory without adjustable parameters.Comment: Version Published in Phys. Rev. Lett. (Phys. Rev. Lett. 99, 236803
(2007)
The Bright Side of Coulomb Blockade
We explore the photonic (bright) side of dynamical Coulomb blockade (DCB) by
measuring the radiation emitted by a dc voltage-biased Josephson junction
embedded in a microwave resonator. In this regime Cooper pair tunneling is
inelastic and associated to the transfer of an energy 2eV into the resonator
modes. We have measured simultaneously the Cooper pair current and the photon
emission rate at the resonance frequency of the resonator. Our results show two
regimes, in which each tunneling Cooper pair emits either one or two photons
into the resonator. The spectral properties of the emitted radiation are
accounted for by an extension to DCB theory.Comment: 4 pages, 4 figures + 3 pages, 1 figure supplementary materia
Potential and current distribution in strongly anisotropic Bi(2)Sr(2) CaCu(2)O(8) single crystals at current breakdown
Experiments on potential differences in the low-temperature vortex solid
phase of monocrystalline platelets of superconducting Bi(2)Sr(2)CaCu(2)O(8)
(BSCCO) subjected to currents driven either through an "ab" surface or from one
such surface to another show evidence of a resistive/nonresistive front moving
progressively out from the current contacts as the current increases. The depth
of the resistive region has been measured by a novel in-depth voltage probe
contact. The position of the front associated with an injection point appears
to depend only on the current magnitude and not on its withdrawal point. It is
argued that enhanced nonresistive superconducting anisotropy limits current
penetration to less than the London length and results in a flat rectangular
resistive region with simultaneous "ab" and "c" current breakdown which moves
progressively out from the injection point with increasing current.
Measurements in "ab" or "c" configurations are seen to give the same
information, involving both ab-plane and c-axis conduction properties.Comment: 9 pages, 13 figures, typo error corrected, last section was refine
- …
