848 research outputs found

    Sea turtle nesting in the Ten Thousand Islands of Florida

    Get PDF
    Loggerhead sea turtles (Caretta caretta) nest in numerous substrate and beach types within the Ten Thousand Islands (TTl) of southwest Florida. Nesting beach selection was analyzed on 12 islands within this archipelago. Numerous physical characteristics were recorded to identify the relatedness of these variables and determine their importance for nesting beach selection in C. caretta. These variables were chosen after evaluating the islands, conducting literature searches and soliciting personal communications. Along transects, data were collected, on the following: height of canopy, beach width, overall slope (beach slope and slope of offshore approach) and sand samples analyzed for pH, percentage of water, percentage of organic content, percentage of carbonate and particle size (8 size classes). Data on ordinal aspect of beaches and beach length were also recorded and included in the analysis. All of the variables were analyzed by tree regression, incorporating the nesting data into the analysis. In the TTl, loggerheads appear to prefer wider beaches (p< 0.001; R2 = 0.56) that inherently have less slope, and secondarily, wider beaches that have low amounts of carbonate (p< O.00 1). In addition, C. caretta favors nest sites within or in close proximity to the supra-littoral vegetation zone of beaches in the TTl (p< 0.001). (86 page document

    Finite bias visibility of the electronic Mach-Zehnder interferometer

    Full text link
    We present an original statistical method to measure the visibility of interferences in an electronic Mach-Zehnder interferometer in the presence of low frequency fluctuations. The visibility presents a single side lobe structure shown to result from a gaussian phase averaging whose variance is quadratic with the bias. To reinforce our approach and validate our statistical method, the same experiment is also realized with a stable sample. It exhibits the same visibility behavior as the fluctuating one, indicating the intrinsic character of finite bias phase averaging. In both samples, the dilution of the impinging current reduces the variance of the gaussian distribution.Comment: 4 pages, 5 figure

    Noise dephasing in the edge states of the Integer Quantum Hall regime

    Full text link
    An electronic Mach Zehnder interferometer is used in the integer quantum hall regime at filling factor 2, to study the dephasing of the interferences. This is found to be induced by the electrical noise existing in the edge states capacitively coupled to each others. Electrical shot noise created in one channel leads to phase randomization in the other, which destroys the interference pattern. These findings are extended to the dephasing induced by thermal noise instead of shot noise: it explains the underlying mechanism responsible for the finite temperature coherence time τϕ(T)\tau_\phi(T) of the edge states at filling factor 2, measured in a recent experiment. Finally, we present here a theory of the dephasing based on Gaussian noise, which is found in excellent agreement with our experimental results.Comment: ~4 pages, 4 figure

    Quantum coherence engineering in the integer quantum Hall regime

    Full text link
    We present an experiment where the quantum coherence in the edge states of the integer quantum Hall regime is tuned with a decoupling gate. The coherence length is determined by measuring the visibility of quantum interferences in a Mach-Zehnder interferometer as a function of temperature, in the quantum Hall regime at filling factor two. The temperature dependence of the coherence length can be varied by a factor of two. The strengthening of the phase coherence at finite temperature is shown to arise from a reduction of the coupling between co-propagating edge states. This opens the way for a strong improvement of the phase coherence of Quantum Hall systems. The decoupling gate also allows us to investigate how inter-edge state coupling influence the quantum interferences' dependence on the injection bias. We find that the finite bias visibility can be decomposed into two contributions: a Gaussian envelop which is surprisingly insensitive to the coupling, and a beating component which, on the contrary, is strongly affected by the coupling.Comment: 4 pages, 5 figure

    Frequency shifts of photoassociative spectra of ultracold metastable Helium atoms : a new measurement of the s-wave scattering length

    Full text link
    We observe light-induced frequency shifts in one-color photoassociative spectra of magnetically trapped 4^4He^* atoms in the metastable 23S12^3S_1 state. A pair of ultracold spin-polarized 23S12^3S_1 helium atoms is excited into a molecular bound state in the purely long range 0u+0_u^+ potential connected to the 23S123P02^3S_1 - 2^3P_0 asymptote. The shift arises from the optical coupling of the molecular excited bound state with the scattering states and the bound states of two colliding 23S12^3S_1 atoms. We measure the frequency-shifts for several ro-vibrational levels in the 0u+0^+_u potential and find a linear dependence on the photoassociation laser intensity. Comparison with a theoretical analysis provides a good indication for the s-wave scattering length aa of the quintet (5Σg+^5\Sigma_g^+) potential, a=7.2±0.6a=7.2\pm 0.6 nm, which is significantly lower than most previous results obtained by non-spectroscopic methods.Comment: 7 pages, 4 figure

    Tuning decoherence with a voltage probe

    Full text link
    We present an experiment where we tune the decoherence in a quantum interferometer using one of the simplest object available in the physic of quantum conductors : an ohmic contact. For that purpose, we designed an electronic Mach-Zehnder interferometer which has one of its two arms connected to an ohmic contact through a quantum point contact. At low temperature, we observe quantum interference patterns with a visibility up to 57%. Increasing the connection between one arm of the interferometer to the floating ohmic contact, the voltage probe, reduces quantum interferences as it probes the electron trajectory. This unique experimental realization of a voltage probe works as a trivial which-path detector whose efficiency can be simply tuned by a gate voltage

    Experimental Test of the High-Frequency Quantum Shot Noise Theory in a Quantum Point Contact

    Get PDF
    We report on direct measurements of the electronic shot noise of a quantum point contact at frequencies nu in the range 4-8 GHz. The very small energy scale used ensures energy independent transmissions of the few transmitted electronic modes and their accurate knowledge. Both the thermal energy and the quantum point contact drain-source voltage Vds are comparable to the photon energy hnu leading to observation of the shot noise suppression when Vds<hν/eV_{ds}<h\nu/e. Our measurements provide the first complete test of the finite frequency shot noise scattering theory without adjustable parameters.Comment: Version Published in Phys. Rev. Lett. (Phys. Rev. Lett. 99, 236803 (2007)

    The Bright Side of Coulomb Blockade

    Full text link
    We explore the photonic (bright) side of dynamical Coulomb blockade (DCB) by measuring the radiation emitted by a dc voltage-biased Josephson junction embedded in a microwave resonator. In this regime Cooper pair tunneling is inelastic and associated to the transfer of an energy 2eV into the resonator modes. We have measured simultaneously the Cooper pair current and the photon emission rate at the resonance frequency of the resonator. Our results show two regimes, in which each tunneling Cooper pair emits either one or two photons into the resonator. The spectral properties of the emitted radiation are accounted for by an extension to DCB theory.Comment: 4 pages, 4 figures + 3 pages, 1 figure supplementary materia

    Potential and current distribution in strongly anisotropic Bi(2)Sr(2) CaCu(2)O(8) single crystals at current breakdown

    Full text link
    Experiments on potential differences in the low-temperature vortex solid phase of monocrystalline platelets of superconducting Bi(2)Sr(2)CaCu(2)O(8) (BSCCO) subjected to currents driven either through an "ab" surface or from one such surface to another show evidence of a resistive/nonresistive front moving progressively out from the current contacts as the current increases. The depth of the resistive region has been measured by a novel in-depth voltage probe contact. The position of the front associated with an injection point appears to depend only on the current magnitude and not on its withdrawal point. It is argued that enhanced nonresistive superconducting anisotropy limits current penetration to less than the London length and results in a flat rectangular resistive region with simultaneous "ab" and "c" current breakdown which moves progressively out from the injection point with increasing current. Measurements in "ab" or "c" configurations are seen to give the same information, involving both ab-plane and c-axis conduction properties.Comment: 9 pages, 13 figures, typo error corrected, last section was refine
    corecore