25 research outputs found

    A challenging redox neutral Cp*Co(III)-catalysed alkylation of acetanilides with 3-buten-2-one: synthesis and key insights into the mechanism through DFT calculations

    Get PDF
    Traditional, established palladium cross-coupling procedures are widely applied in complex molecule synthesis; however, there is a significant disadvantage in the requirement for pre-functionalised substrates (commonly halides/triflates). Direct C–H activation protocols provide the opportunity for a novel approach to synthesis, although this field is still in its relative infancy and often transferability between substrate classes remains unresolved and limitations not fully understood. This study focuses on the translation of an established Cp*Co(III)-catalysed alkylation of benzamides to related acetanilides using 3-buten-2-one as coupling partner. The developed procedure provides a wide substrate scope in terms of substituted acetanilides, although the optimised conditions were found to be more forcing than those for the corresponding benzamide substrates. Interestingly, density functional theory (DFT) studies reveal that the major impediment in the mechanism is not the C–H activation step, but instead and unexpectedly, effective competition with more stable compounds (resting states) not involved in the catalytic cycle

    Publisher Correction: Hydro-climatic changes of wetlandscapes across the world

    Get PDF
    Assessments of ecosystem service and function losses of wetlandscapes (i.e., wetlands and their hydrological catchments) suffer from knowledge gaps regarding impacts of ongoing hydro-climatic change. This study investigates hydro-climatic changes during 1976–2015 in 25 wetlandscapes distributed across the world’s tropical, arid, temperate and cold climate zones. Results show that the wetlandscapes were subject to precipitation (P) and temperature (T) changes consistent with mean changes over the world’s land area. However, arid and cold wetlandscapes experienced higher T increases than their respective climate zone. Also, average P decreased in arid and cold wetlandscapes, contrarily to P of arid and cold climate zones, suggesting that these wetlandscapes are located in regions of elevated climate pressures. For most wetlandscapes with available runoff (R) data, the decreases were larger in R than in P, which was attributed to aggravation of climate change impacts by enhanced evapotranspiration losses, e.g. caused by land-use changes

    Studies of Zn-Al-Ce mixed oxides as catalysts for diesel soot combustion

    No full text
    A series of Zn-Al-Ce mixed oxides was synthesized by a co-precipitation method. The obtained samples were characterized with respect to composition (XRF), structure (XRD, FT-IR) and texture (BET). Zn-Al-Ce mixed oxides were tested as catalysts of diesel soot combustion. The best catalytic activity was found for Zn2Ce oxide system, which operated in the temperature range of 350-500°C

    Conserving alpha and beta diversity in wood-production landscapes

    No full text
    International demand for wood and other forest products continues to grow rapidly, and uncertainties remain about how animal communities will respond to intensifying resource extraction associated with woody bioenergy production. We examined changes in alpha and beta diversity of bats, bees, birds, and reptiles across wood production landscapes in the southeastern United States, a biodiversity hotspot that is one of the principal sources of woody biomass globally. We sampled across a spatial gradient of paired forest land-uses (representing pre and postharvest) that allowed us to evaluate biological community changes resulting from several types of biomass harvest. Short-rotation practices and residue removal following clearcuts were associated with reduced alpha diversity (−14.1 and −13.9 species, respectively) and lower beta diversity (i.e., Jaccard dissimilarity) between land-use pairs (0.46 and 0.50, respectively), whereas midrotation thinning increased alpha (+3.5 species) and beta diversity (0.59). Over the course of a stand rotation in a single location, biomass harvesting generally led to less biodiversity. Cross-taxa responses to resource extraction were poorly predicted by alpha diversity: correlations in responses between taxonomic groups were highly variable (−0.2 to 0.4) with large uncertainties. In contrast, beta diversity patterns were highly consistent and predictable across taxa, where correlations in responses between taxonomic groups were all positive (0.05–0.4) with more narrow uncertainties. Beta diversity may, therefore, be a more reliable and information-rich indicator than alpha diversity in understanding animal community response to landscape change. Patterns in beta diversity were primarily driven by turnover instead of species loss or gain, indicating that wood extraction generates habitats that support different biological communities.Fil: Gavin, Jones M.. University of Florida. Department of Wildlife Ecology and Conservation; Estados Unidos. USDA Forest Service. Rocky Mountain Research Station; Estados UnidosFil: Brosi, Berry. University of Washington; Estados Unidos. University of Emory; Estados UnidosFil: Evans, Jason. Stetson University. Department of Environmental Science and Studies; Estados UnidosFil: Gottlieb, Isabel G. W.. University of Florida; Estados UnidosFil: Loy, Xingwen. University of Emory; Estados Unidos. Atlanta Botanical Garden. Conservation & Research Department; Estados UnidosFil: NĂșñez Regueiro, Mauricio Manuel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; Argentina. University of Florida; Estados UnidosFil: Ober, Holly K.. University of Florida. Department of Wildlife Ecology and Conservation; Estados UnidosFil: Pienaar, Elizabeth. University of Georgia; Estados Unidos. University of Pretoria. Mammal Research Institute; Estados UnidosFil: Pillay, Rajeev. University of Florida. Department of Wildlife Ecology and Conservation; Estados UnidosFil: Pisarello, Kathryn. University of Florida. Department of Wildlife Ecology and Conservation; Estados UnidosFil: Smith, Lora L.. Jones Center at Ichauway; Estados UnidosFil: Fletcher, Robert J.. University of Florida. Department of Wildlife Ecology and Conservation; Estados Unido

    Data for wetlandscapes and their changes around the world

    Get PDF
    Geography and associated hydrological, hydroclimate and land-use conditions and their changes determine the states and dynamics of wetlands and their ecosystem services. The influences of these controls are not limited to just the local scale of each individual wetland but extend over larger landscape areas that integrate multiple wetlands and their total hydrological catchment-the wetlandscape. However, the data and knowledge of conditions and changes over entire wetlandscapes are still scarce, limiting the capacity to accurately understand and manage critical wetland ecosystems and their services under global change. We present a new Wetlandscape Change Information Database (WetCID), consisting of geographic, hydrological, hydroclimate and land-use information and data for 27 wetlandscapes around the world. This combines survey-based local information with geographic shapefiles and gridded datasets of large-scale hydroclimate and land-use conditions and their changes over whole wetlandscapes. Temporally, WetCID contains 30-year time series of data for mean monthly precipitation and temperature and annual land-use conditions. The survey-based site information includes local knowledge on the wetlands, hydrology, hydroclimate and land uses within each wetlandscape and on the availability and accessibility of associated local data. This novel database (available through PANGAEA https://doi.org/10.1594/PANGAEA.907398; Ghajarnia et al., 2019) can support site assessments; cross-regional comparisons; and scenario analyses of the roles and impacts of land use, hydroclimatic and wetland conditions, and changes in whole-wetlandscape functions and ecosystem services.. © 2005 IEEE Computer Society. All rights reserved
    corecore