360 research outputs found

    Lagrange Multipliers in Infinite-Dimensional Systems, Methods of

    Get PDF
    International audienceThis entry will describe Lagrange multipliers method using a formulation which is valid for infinite-dimensional dynamical systems. The method of Lagrange multipliers is employed to deal with systems subject to constraints. The theoretical foundations of this method are presented, and a proof of the main theorem is illustrated for the relevant case of constraints defined on a Banach vector space

    Transmission of Plasmodium vivax in South-Western Uganda: Report of Three Cases in Pregnant Women

    Get PDF
    Plasmodium vivax is considered to be rare in the predominantly Duffy negative populations of Sub-Saharan Africa, as this red blood cell surface antigen is essential for invasion by the parasite. However, despite only very few reports of molecularly confirmed P. vivax from tropical Africa, serological evidence indicated that 13% of the persons sampled in Congo had been exposed to P. vivax. We identified P. vivax by microscopy in 8 smears from Ugandan pregnant women who had been enrolled in a longitudinal study of malaria in pregnancy. A nested polymerase chain reaction (PCR) protocol was used to detect and identify the Plasmodium parasites present. PCR analysis confirmed the presence of P. vivax for three of the women and analysis of all available samples from these women revealed clinically silent chronic low-grade vivax infections for two of them. The parasites in one woman carried pyrimethamine resistance-associated double non-synonymous mutations in the P. vivax dihydrofolate reductase gene. The three women found infected with P. vivax were Duffy positive as were nine of 68 women randomly selected from the cohort. The data presented from these three case reports is consistent with stable transmission of malaria in a predominantly Duffy negative African population. Given the substantial morbidity associated with vivax infection in non-African endemic areas, it will be important to investigate whether the distribution and prevalence of P. vivax have been underestimated in Sub-Saharan Africa. This is particularly important in the context of the drive to eliminate malaria and its morbidity

    Varying efficacy of artesunate+amodiaquine and artesunate+sulphadoxine-pyrimethamine for the treatment of uncomplicated falciparum malaria in the Democratic Republic of Congo: a report of two in-vivo studies

    Get PDF
    BACKGROUND: Very few data on anti-malarial efficacy are available from the Democratic Republic of Congo (DRC). DRC changed its anti-malarial treatment policy to amodiaquine (AQ) and artesunate (AS) in 2005. METHODS: The results of two in vivo efficacy studies, which tested AQ and sulphadoxine-pyrimethamine (SP) monotherapies and AS+SP and AS+AQ combinations in Boende (Equatorial province), and AS+SP, AS+AQ and SP in Kabalo (Katanga province), between 2003 and 2004 are presented. The methodology followed the WHO 2003 protocol for assessing the efficacy of anti-malarials in areas of high transmission. RESULTS: Out of 394 included patients in Boende, the failure rates on day 28 after PCR-genotyping adjustment of AS+SP and AS+AQ were estimated as 24.6% [95% CI: 16.6-35.5] and 15.1% [95% CI: 8.6-25.7], respectively. For the monotherapies, failure rates were 35.9% [95% CI: 27.0-46.7] for SP and 18.3% [95% CI: 11.6-28.1] for AQ. Out of 207 patients enrolled in Kabalo, the failure rate on day 28 after PCR-genotyping adjustment was 0 [1-sided 95% CI: 5.8] for AS+SP and AS+AQ [1-sided 95% CI: 6.2]. It was 19.6% [95% CI: 11.4-32.7] for SP monotherapy. CONCLUSION: The finding of varying efficacy of the same combinations at two sites in one country highlights one difficulty of implementing a uniform national treatment policy in a large country. The poor efficacy of AS+AQ in Boende should alert the national programme to foci of resistance and emphasizes the need for systems for the prospective monitoring of treatment efficacy at sentinel sites in the country

    Understanding the pharmacokinetics of Coartem®

    Get PDF
    Artemether and lumefantrine (AL), the active constituents of Coartem® exhibit complementary pharmacokinetic profiles. Artemether is absorbed quickly; peak concentrations of artemether and its main active metabolite, dihydroartemisinin (DHA) occur at approximately two hours post-dose, leading to a rapid reduction in asexual parasite mass and a prompt resolution of symptoms. Lumefantrine is absorbed and cleared more slowly (terminal elimination half-life 3-4 days in malaria patients), and accumulates with successive doses, acting to prevent recrudescence by destroying any residual parasites that remain after artemether and DHA have been cleared from the body. Food intake significantly enhances the bioavailability of both artemether and lumefantrine, an effect which is more apparent for the highly lipophilic lumefantrine. However, a meal with only a small amount of fat (1.6 g) is considered sufficient to achieve adequate exposure to lumefantrine. The pharmacokinetics of artemether or lumefantrine are similar in children, when dosed according to their body weight, compared with adults. No randomized study has compared the pharmacokinetics of either agent in pregnant versus non-pregnant women. Studies in healthy volunteers and in children with malaria have confirmed that the pharmacokinetic characteristics of crushed standard AL tablets and the newly-developed Coartem® Dispersible tablet formulation are similar. Studies to date in healthy volunteers have not identified any clinically relevant drug-drug interactions; data relating to concomitant administration of HIV therapies are limited. While dose-response analyses are difficult to undertake because of the low rate of treatment failures under AL, it appears that artemether and DHA exposure impact on parasite clearance time while lumefantrine exposure is associated with cure rate, consistent with their respective modes of action. In conclusion, knowledge of the pharmacokinetic profiles of artemether and lumefantrine is increasing within a range of settings, including infants and children. However, additional data would be warranted to better characterize artemether and lumefantrine pharmacokinetics in patients with hepatic impairment, in pregnant women, and in patients undergoing HIV/AIDS chemotherapy

    Nifurtimox plus Eflornithine for Late-Stage Sleeping Sickness in Uganda: A Case Series

    Get PDF
    African sleeping sickness (Human African Trypanosomiasis, or HAT), due to the parasite Trypanosoma brucei gambiense, threatens millions across remote and conflict-affected regions of sub-Saharan Africa, and causes about 15 000 reported cases every year. Untreated HAT progresses from stage 1 (infection of the blood and lymph) to stage 2 (invasion of the central nervous system), and ultimately death. Drugs for stage 2 are few. The historical mainstay, melarsoprol, is highly toxic and inefficacious in some areas due to parasite resistance. Eflornithine is the only viable alternative, already established as safe and efficacious, but difficult to administer and at risk of resistance if used in monotherapy. This paper reports on a series of 48 Ugandan patients treated with a novel combination of nifurtimox (a drug registered for Chagas disease) and eflornithine, 17 as part of a terminated trial, and 31 in a subsequent case series study. Despite the low sample size, findings are promising: no cases of treatment failure, no treatment terminations, and no HAT- or treatment-related deaths. Nifurtimox plus eflornithine may be the best treatment hope for stage 2 HAT patients in the next decade, while new drugs are developed. A larger, multi-centric trial of the combination is ongoing

    Randomized comparison of amodiaquine plus sulfadoxine-pyrimethamine, artemether-lumefantrine, and dihydroartemisinin-piperaquine for the treatment of uncomplicated Plasmodium falciparum malaria in Burkina Faso.

    No full text
    BACKGROUND: Combination antimalarial therapy is advocated to improve treatment efficacy and limit selection of drug-resistant parasites. We compared the efficacies of 3 combination regimens in Bobo-Dioulasso, Burkina Faso: amodiaquine plus sulfadoxine-pyrimethamine, which was recently shown to be highly efficacious at this site; artemether-lumefantrine, the new national first-line antimalarial regimen; and dihydroartemisinin-piperaquine (DP), a newer regimen. METHODS: We enrolled 559 patients >or=6 months of age with uncomplicated Plasmodium falciparum malaria and randomized them to the 3 regimens. We analyzed the risk of recurrent parasitemia by day 28 and day 42, both unadjusted and adjusted by PCR methods to distinguish recrudescence and new infection. RESULTS: Complete data were available for 517 (92.5%) of the enrolled subjects. Early treatment failures occurred in 5 patients treated with amodiaquine plus sulfadoxine-pyrimethamine and in 2 patients each treated with the other regimens. The day 28 risk of recurrent parasitemia, unadjusted by genotyping, was significantly higher for patients receiving artemether-lumefantrine than for patients receiving amodiaquine plus sulfadoxine-pyrimethamine (20.1% vs. 6.2%; risk difference, 13.8%; 95% confidence interval, 7.0%-20.7%) or dihydroartemisinin-piperaquine (20.1% vs. 2.2%; risk difference, 17.9%; 95% confidence interval, 11.6%-24.1%). Similar differences were seen for children <5 years of age (54% of the study population) and when outcomes were extended to 42 days. Significant differences were not seen between outcomes for patients receiving amodiaquine plus sulfadoxine-pyrimethamine and outcomes for those receiving dihydroartemisinin-piperaquine. Recrudescences were uncommon (occurring in <5% of patients) in all treatment groups. No serious adverse events were noted. CONCLUSIONS: All regimens were highly efficacious in clearing infection, but considering the risks of recurrent malaria after therapy, the amodiaquine plus sulfadoxine-pyrimethamine and dihydroartemisinin-piperaquine regimens were more efficacious than the artemether-lumefantrine regimen (the new national regimen in Burkina Faso) for the treatment of uncomplicated P. falciparum malaria

    Artemether-Lumefantrine versus Dihydroartemisinin-Piperaquine for Treating Uncomplicated Malaria: A Randomized Trial to Guide Policy in Uganda

    Get PDF
    BACKGROUND: Uganda recently adopted artemether-lumefantrine (AL) as the recommended first-line treatment for uncomplicated malaria. However, AL has several limitations, including a twice-daily dosing regimen, recommendation for administration with fatty food, and a high risk of reinfection soon after therapy in high transmission areas. Dihydroartemisinin-piperaquine (DP) is a new alternative artemisinin-based combination therapy that is dosed once daily and has a long post-treatment prophylactic effect. We compared the efficacy and safety of AL with DP in Kanungu, an area of moderate malaria transmission. METHODOLOGY/PRINCIPAL FINDINGS: Patients aged 6 months to 10 years with uncomplicated falciparum malaria were randomized to therapy and followed for 42 days. Genotyping was used to distinguish recrudescence from new infection. Of 414 patients enrolled, 408 completed follow-up. Compared to patients treated with artemether-lumefantrine, patients treated with dihydroartemisinin-piperaquine had a significantly lower risk of recurrent parasitaemia (33.2% vs. 12.2%; risk difference = 20.9%, 95% CI 13.0-28.8%) but no statistically significant difference in the risk of treatment failure due to recrudescence (5.8% vs. 2.0%; risk difference = 3.8%, 95% CI -0.2-7.8%). Patients treated with dihydroartemisinin-piperaquine also had a lower risk of developing gametocytaemia after therapy (4.2% vs. 10.6%, p = 0.01). Both drugs were safe and well tolerated. CONCLUSIONS/SIGNIFICANCE: DP is highly efficacious, and operationally preferable to AL because of a less intensive dosing schedule and requirements. Dihydroartemisinin-piperaquine should be considered for a role in the antimalarial treatment policy of Uganda. TRIAL REGISTRATION: Controlled-Trials.com ISRCTN75606663

    Artemether-Lumefantrine versus Dihydroartemisinin-Piperaquine for Treatment of Malaria: A Randomized Trial

    Get PDF
    OBJECTIVES: To compare the efficacy and safety of artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP) for treating uncomplicated falciparum malaria in Uganda. DESIGN: Randomized single-blinded clinical trial. SETTING: Apac, Uganda, an area of very high malaria transmission intensity. PARTICIPANTS: Children aged 6 mo to 10 y with uncomplicated falciparum malaria. INTERVENTION: Treatment of malaria with AL or DP, each following standard 3-d dosing regimens. OUTCOME MEASURES: Risks of recurrent parasitemia at 28 and 42 d, unadjusted and adjusted by genotyping to distinguish recrudescences and new infections. RESULTS: Of 421 enrolled participants, 417 (99%) completed follow-up. The unadjusted risk of recurrent falciparum parasitemia was significantly lower for participants treated with DP than for those treated with AL after 28 d (11% versus 29%; risk difference [RD] 18%, 95% confidence interval [CI] 11%-26%) and 42 d (43% versus 53%; RD 9.6%, 95% CI 0%-19%) of follow-up. Similarly, the risk of recurrent parasitemia due to possible recrudescence (adjusted by genotyping) was significantly lower for participants treated with DP than for those treated with AL after 28 d (1.9% versus 8.9%; RD 7.0%, 95% CI 2.5%-12%) and 42 d (6.9% versus 16%; RD 9.5%, 95% CI 2.8%-16%). Patients treated with DP had a lower risk of recurrent parasitemia due to non-falciparum species, development of gametocytemia, and higher mean increase in hemoglobin compared to patients treated with AL. Both drugs were well tolerated; serious adverse events were uncommon and unrelated to study drugs. CONCLUSION: DP was superior to AL for reducing the risk of recurrent parasitemia and gametocytemia, and provided improved hemoglobin recovery. DP thus appears to be a good alternative to AL as first-line treatment of uncomplicated malaria in Uganda. To maximize the benefit of artemisinin-based combination therapy in Africa, treatment should be integrated with aggressive strategies to reduce malaria transmission intensity

    Pharmacovigilance of antimalarial treatment in Africa: is it possible?

    Get PDF
    Pharmacovigilance, defined as "the science and activities relating to the detection, assessment, understanding and prevention of adverse effects or any other possible drug related problem", is increasingly being recognized in Africa. Many African countries have simultaneously adopted artemisinin derivative based combination therapy (ACT) as first-line treatment for uncomplicated malaria, offering an opportunity to assess the safety of these drugs when used widely. While ACTs appear to be safe and well-tolerated, there is little experience with these medicines in Africa, outside clinical trials. Pharmacovigilance for ACTs and other combination treatments in Africa is essential. Malaria transmission intensity is high and antimalarial medicines are used frequently. Presumptive treatment of fever with antimalarials is common, often in the absence of a confirmed diagnosis, using drugs obtained without a prescription. Informal use of antimalarial drugs may increase the risk of incorrect dosing, inappropriate treatment, and drug interactions, which may impact negatively on drug safety. Furthermore, the administration of antimalarial treatments in patients with a concomitant illness, including HIV/AIDs, tuberculosis and malnutrition, is a concern. African countries are being encouraged to establish pharmacovigilance systems as ACTs are rolled out. However, pharmacovigilance is difficult, even in countries with a well-developed health care system. The rationale for pharmacovigilance of antimalarial drugs is discussed here, outlining the practical challenges and proposing approaches that could be adopted in Africa
    corecore