15 research outputs found

    Role of cutaneous and proprioceptive inputs in sensorimotor integration and plasticity occurring in the facial primary motor cortex

    No full text
    KEY POINTS: Previous studies investigating the effects of somatosensory afferent inputs on cortical excitability and neural plasticity often used TMS of hand motor cortex (M1) as a model. In this model it is difficult to separate out the relative contribution of cutaneous and muscle afferent input to each effect. In the face, cutaneous and muscle afferents are segregated in the trigeminal and facial nerves respectively. We studied their relative contribution to corticobulbar excitability and neural plasticity in the depressor anguli oris M1. Stimulation of trigeminal afferents induced short-latency (SAI) but not long-latency (LAI) afferent inhibition of face M1. In contrast, facial nerve stimulation evoked LAI but not SAI. Plasticity induction was observed only after a paired associative stimulation protocol using the facial nerve. Physiological differences in effects of cutaneous and muscle afferent inputs on face M1 excitability suggest they play separate functional roles in behaviour. ABSTRACT: The lack of conventional muscle spindles in face muscles raises the question of how sensory input from the face is used to control muscle activation. In 16 healthy volunteers, we probed sensorimotor interactions in face motor cortex (fM1) using short-afferent inhibition (SAI), long-afferent inhibition (LAI) and LTP-like plasticity following paired associative stimulation (PAS) in the depressor anguli oris muscle (DAO). Stimulation of low threshold afferents in the trigeminal nerve produced a clear SAI (p < 0.05) when the interval between trigeminal stimulation and TMS of fM1 was 15-30 ms. However there was no evidence for LAI at longer intervals of 100-200 ms, nor was there any effect of PAS. In contrast, facial nerve stimulation produced significant LAI (p < 0.05) as well as significant facilitation 10-30 minutes after PAS (p < 0.05). Given that the facial nerve is a pure motor nerve, we presume that the afferent fibres responsible were those activated by the evoked muscle twitch. The F-wave in DAO was unaffected during both LAI and SAI consistent with their presumed cortical origin. We hypothesise that in fM1, SAI is evoked by activity in low threshold, presumably cutaneous afferents, whereas LAI and PAS require activity in (higher threshold) afferents activated by the muscle twitch evoked by electrical stimulation of the facial nerve. Cutaneous inputs may exert a paucisynaptic inhibitory effect on fM1, while proprioceptive information is likely to target inhibitory and excitatory polysynaptic circuits involved in LAI and PAS. Such information may be relevant to the physiopathology of several disorders involving the cranio-facial system

    Role of cutaneous and proprioceptive inputs in sensorimotor integration and plasticity occurring in the facial primary motor cortex.

    No full text
    Previous studies investigating the effects of somatosensory afferent inputs on cortical excitability and neural plasticity often used transcranial magnetic stimulation (TMS) of hand motor cortex (M1) as a model, but in this model it is difficult to separate out the relative contribution of cutaneous and muscle afferent input to each effect. In the face, cutaneous and muscle afferents are segregated in the trigeminal and facial nerves, respectively. We studied their relative contribution to corticobulbar excitability and neural plasticity in the depressor anguli oris M1. Stimulation of trigeminal afferents induced short-latency (SAI) but not long-latency (LAI) afferent inhibition of face M1, while facial nerve stimulation evoked LAI but not SAI. Plasticity induction was observed only after a paired associative stimulation protocol using the facial nerve. Physiological differences in effects of cutaneous and muscle afferent inputs on face M1 excitability suggest they play separate functional roles in behaviour. The lack of conventional muscle spindles in face muscles raises the question of how sensory input from the face is used to control muscle activation. In 16 healthy volunteers, we probed sensorimotor interactions in face motor cortex (fM1) using short-afferent inhibition (SAI), long-afferent inhibition (LAI) and LTP-like plasticity following paired associative stimulation (PAS) in the depressor anguli oris muscle (DAO). Stimulation of low threshold afferents in the trigeminal nerve produced a clear SAI (P &lt; 0.05) when the interval between trigeminal stimulation and transcranial magnetic stimulation (TMS) of fM1 was 15-30 ms. However, there was no evidence for LAI at longer intervals of 100-200 ms, nor was there any effect of PAS. In contrast, facial nerve stimulation produced significant LAI (P 0.05) as well as significant facilitation 10-30 minutes after PAS (P 0.05). Given that the facial nerve is a pure motor nerve, we presume that the afferent fibres responsible were those activated by the evoked muscle twitch. The F-wave in DAO was unaffected during both LAI and SAI, consistent with their presumed cortical origin. We hypothesize that, in fM1, SAI is evoked by activity in low threshold, presumably cutaneous afferents, whereas LAI and PAS require activity in (higher threshold) afferents activated by the muscle twitch evoked by electrical stimulation of the facial nerve. Cutaneous inputs may exert a paucisynaptic inhibitory effect on fM1, while proprioceptive information is likely to target inhibitory and excitatory polysynaptic circuits involved in LAI and PAS. Such information may be relevant to the physiopathology of several disorders involving the cranio-facial system

    Trigeminal nerve stimulation modulates brainstem more than cortical excitability in healthy humans

    No full text
    Multiple sites in the central nervous system (CNS) have been hypothesized to explain the beneficial effects of transcutaneous trigeminal nerve stimulation (TNS) on several disorders. This work investigated the acute effects of TNS on the excitability of brainstem and intracortical circuits, as well as on sensorimotor integration processes at cortical level in physiological conditions. Brainstem excitability was evaluated in seventeen healthy subjects measuring the R1 and R2 areas of the blink reflex (BR) and its recovery cycle, with cortical excitability and sensorimotor integration assessed by probing short-interval (SICI) and long-interval (LICI) intracortical inhibition, with short-interval (SICF), intracortical facilitation (ICF), short-latency (SAI) and long-latency (LAI) inhibition measuring motor potentials evoked in the first dorsal interosseous muscle by TMS of the contralateral motor cortex. Neurophysiological parameters were assessed, in seventeen healthy subjects, before and after cyclic 20-min TNS delivered bilaterally to the infraorbital nerve. After TNS, the area of the R2 was significantly reduced (p = 0.018). By contrast, R1 area and R2 recovery cycle were unaffected. Similarly, SICI, ICF, LICI, SICF, SAI and LAI appeared unaltered after TNS. These data suggest that, in normal subjects, TNS mainly acts on brainstem polysynaptic circuits mediating the R2 component of the BR and plays a minor role in modifying the activity of higher-level structures involved in the R2 recovery cycle and in modulation of cortical excitability. A further investigation of a chronic TNS-induced effect may disclose a higher potential for TNS in producing measurable after effects on its CNS targets

    Vestibulo masseteric reflex and acoustic masseteric Reflex. Normative data and effects of age and gender

    No full text
    Objective To provide normative data for the Vestibulo-Masseteric Reflex (VMR) and Acoustic-Masseteric Reflex (AMR) in healthy subjects, stratified for age and gender. Methods A total of 82 healthy subjects (M:F 43:39, mean age 39.3 ± 18.4 years, range 13–79 years) underwent recording of click-evoked VMR and AMR (0.1 ms duration, 5 Hz frequency) from active masseter muscles. Masseter responses to uni- and bilateral stimulation were recorded in a zygomatic and a mandibular configuration, according to the position of the reference electrode. Stimulation intensity curves were recorded for each reflex in ten subjects (mean age 20.7 ± 8.1 years). Gender effect was investigated in 62 subjects and age effect was analyzed in six 10-subject groups aged from 65 years. Onset and peak latencies, interpeak intervals, raw and corrected amplitudes, latency and amplitude asymmetries were analyzed. Results VMR had a higher elicitation rate than AMR. For both reflexes, rates of elicitation, and corrected amplitudes were higher in the zygomatic configuration, and bilateral stimulation elicited larger responses. Best acoustic ranges of elicitation were 98–113 dB for AMR and 128–138 dB for VMR. Reflex latencies were shorter in females than males. Frequency and amplitude of VMR and AMR decreased substantially over 55 year olds. Conclusions VMR and AMR can be easily performed in any clinical neurophysiology laboratory. Significance These reflexes can find application in the investigation of brainstem function in central neurological disorders

    Effect of tauroursodeoxycholic acid on survival and safety in amyotrophic lateral sclerosis: a retrospective population-based cohort study

    Get PDF
    Background: Oral tauroursodeoxycholic acid (TUDCA) is a commercial drug currently tested in patients with amyotrophic lateral sclerosis (ALS) both singly and combined with sodium phenylbutyrate. This retrospective study aimed to investigate, in a real-world setting, whether TUDCA had an impact on the overall survival of patients with ALS who were treated with this drug compared to those patients who received standard care only. Methods: This propensity score–matched study was conducted in the Emilia Romagna Region (Italy), which has had an ALS regional registry since 2009. Out of 627 patients with ALS diagnosed from January 1st, 2015 to June 30th, 2021 and recorded in the registry with available information on death/tracheostomy, 86 patients took TUDCA and were matched in a 1:2 ratio with patients who received only usual care according to age at onset, sex, phenotype, diagnostic latency, ALS Functional Rating Scale-Revised (ALSFRS-R) at first visit, disease progression rate at first visit, and BMI at diagnosis. The primary outcome was survival difference (time from onset of symptoms to tracheostomy/death) between TUDCA exposed and unexposed patients. Findings: A total of 86 patients treated with TUDCA were matched to 172 patients who did not receive treatment. TUDCA-exposed patients were stratified based on dosage (less than or equal to 1000 mg/day or greater) and duration (less than or equal to 12 months or longer) of treatment. The median overall survival was 49.6 months (95% CI 41.7–93.5) among those treated with TUDCA and 36.2 months (95% CI 32.7–41.6) in the control group, with a reduced risk of death observed in patients exposed to a higher dosage (defined as ≥ 1000 mg/day) of TUDCA (HR 0.56; 95% CI 0.38–0.83; p = 0.0042) compared to both the control group and those with lower TUDCA dosages (defined as &lt; 1000 mg/day). TUDCA was generally well-tolerated, except for a minority of patients (n = 7, 8.1%) who discontinued treatment due to side effects, primarily gastrointestinal and mild in severity; only 2 adverse events required hospital access but resolved without sequelae. Interpretation: In this population-based exploratory study, patients with ALS who were treated with TUDCA may have prolonged survival compared to patients receiving standard care only. Additional prospective randomized studies are needed to confirm the efficacy and safety of this drug. Funding: Emilia-Romagna Region
    corecore