1,624 research outputs found

    The basis of the physical Hilbert space of lattice gauge theories

    Get PDF
    Non-linear Fourier analysis on compact groups is used to construct an orthonormal basis of the physical (gauge invariant) Hilbert space of Hamiltonian lattice gauge theories. In particular, the matrix elements of the Hamiltonian operator involved are explicitly computed. Finally, some applications and possible developments of the formalism are discussed.Comment: 14 pages, LaTeX (Using amsmath

    PMC8 SYSTEMATIC REVIEW RELIABILITY: EFFICACY OF TWO INDEPENDENT REVIEWERS AND TWO-STEP REVIEWS

    Get PDF

    Relationship between resistivity and specific heat in a canonical non-magnetic heavy fermion alloy system: UPt_5-xAu_x

    Full text link
    UPt_(5-x)Au_x alloys form in a single crystal structure, cubic AuBe_5-type, over a wide range of concentrations from x = 0 to at least x = 2.5. All investigated alloys, with an exception for x = 2.5, were non-magnetic. Their electronic specific heat coefficient γ\gamma varies from about 60 (x = 2) to about 700 mJ/mol K^2 (x = 1). The electrical resistivity for all alloys has a Fermi-liquid-like temperature variation, \rho = \rho_o + AT^2, in the limit of T -> 0 K. The coefficient A is strongly enhanced in the heavy-fermion regime in comparison with normal and transition metals. It changes from about 0.01 (x = 0) to over 2 micro-ohm cm/K^2 (x = 1). A/\gamma^2, which has been postulated to have a universal value for heavy-fermions, varies from about 10^-6 (x = 0, 0.5) to 10^-5 micro-ohm cm (mol K/mJ)^2 (x > 1.1), thus from a value typical of transition metals to that found for some other heavy-fermion metals. This ratio is unaffected, or only weakly affected, by chemical or crystallographic disorder. It correlates with the paramagnetic Curie-Weiss temperature of the high temperature magnetic susceptibility.Comment: 5 pages, 5 eps figures, RevTe

    A Model for QCD at High Density and Large Quark Mass

    Full text link
    We study the high density region of QCD within an effective model obtained in the frame of the hopping parameter expansion and choosing Polyakov type of loops as the main dynamical variables representing the fermionic matter. To get a first idea of the phase structure, the model is analyzed in strong coupling expansion and using a mean field approximation. In numerical simulations, the model still shows the so-called sign problem, a difficulty peculiar to non-zero chemical potential, but it permits the development of algorithms which ensure a good overlap of the Monte Carlo ensemble with the true one. We review the main features of the model and present calculations concerning the dependence of various observables on the chemical potential and on the temperature, in particular of the charge density and the diquark susceptibility, which may be used to characterize the various phases expected at high baryonic density. We obtain in this way information about the phase structure of the model and the corresponding phase transitions and cross over regions, which can be considered as hints for the behaviour of non-zero density QCD.Comment: 21 pages, 29 figure

    Group Field Theory: An overview

    Full text link
    We give a brief overview of the properties of a higher dimensional generalization of matrix model which arises naturally in the context of a background independent approach to quantum gravity, the so called group field theory. We show that this theory leads to a natural proposal for the physical scalar product of quantum gravity. We also show in which sense this theory provides a third quantization point of view on quantum gravity.Comment: 10 page

    Effect of Bt corn on broiler growth performance and fate of feed-derived DNA in the digestive tract

    Get PDF
    Abstract The aim of the study was to evaluate the effect on broiler performance of transgenic Bacillus thuringiensis (Bt) corn containing the Cry1A(b) protein compared with the corresponding near isogenic corn and to analyze the degradation of the Cry1A(b) gene in the digestive tract. Ross male broilers (432) were fed for 42 consecutive days with diets containing Bt or isogenic corn. Diet, Bt corn, and the isogenic form of the Bt corn were analyzed for composition and aflatoxin B1, fumonisin B1, and deoxynivalenol contents. Broiler body weight and feed intake were recorded at regular intervals (d 0, 21, and 42). The presence of the Cry1A(b) gene and plant-specific genes Zein and Sh-2 in gut contents of crop, gizzard, jejunum, cecum, and samples of blood was determined in 10 animals per treatment at the end of the trial using a PCR technique. Chemical composition was not different between Bt and its isogenic form, whereas the fumonisin B1 content for Bt was lower than for isogenic corn (2,039 vs. 1,1034 ppb;

    Hamiltonian LGT in the complete Fourier analysis basis

    Full text link
    The main problem in the Hamiltonian formulation of Lattice Gauge Theories is the determination of an appropriate basis avoiding the over-completeness arising from Mandelstam relations. We short-cut this problem using Harmonic analysis on Lie-Groups and intertwining operators formalism to explicitly construct a basis of the Hilbert space. Our analysis is based only on properties of the tensor category of Lie-Group representations. The Hamiltonian of such theories is calculated yielding a sparse matrix whose spectrum and eigenstates could be exactly derived as functions of the coupling g2g^2Comment: LATTICE99 (theoretical developments), 3 page

    Photons from quantized electric flux representations

    Get PDF
    The quantum theory of U(1) connections admits a diffeomorphism invariant representation in which the electric flux through any surface is quantized. This representation is the analog of the representation of quantum SU(2) theory used in loop quantum gravity. We investigate the relation between this representation, in which the basic excitations are `polymer-like', and the Fock representation, in which the basic excitations are wave-like photons. We show that normalizable states in the Fock space are associated with `distributional' states in the quantized electric flux representation. This work is motivated by the question of how wave-like gravitons in linearised gravity arise from polymer-like states in non-perturbative loop quantum gravity.Comment: 22 pages, no figure

    Exact and semiclassical approach to a class of singular integral operators arising in fluid mechanics and quantum field theory

    Full text link
    A class of singular integral operators, encompassing two physically relevant cases arising in perturbative QCD and in classical fluid dynamics, is presented and analyzed. It is shown that three special values of the parameters allow for an exact eigenfunction expansion; these can be associated to Riemannian symmetric spaces of rank one with positive, negative or vanishing curvature. For all other cases an accurate semiclassical approximation is derived, based on the identification of the operators with a peculiar Schroedinger-like operator.Comment: 12 pages, 1 figure, amslatex, bibtex (added missing label eq.11
    corecore