368 research outputs found
Integrated optical Mach-Zehnder interferometer as simazine immunoprobe
Immunoassay has become a versatile tool in several fields of analytical chemistry. We describe the characterization and the application of different integrated optical channel waveguide Mach-Zehnder interferometers (MZIs) as label-free immunoprobes. The performance of the classical MZI is compared with that of a modified structure which incorporates a 3x3 coupler. Characterization of the devices demonstrates a dramatic improvement gained by using the 3x3 coupler. Two main advantages are achieved by the modified device. First, the possibility of referencing the output signal allows the elimination of signal fluctuations due to coupling and light-source instabilities. An increase of the signal-to-noise ratio by a factor of up to 10 is achieved. Secondly, the phase shift between the three outputs allows unambiguous detection with optimum sensitivity. For the detection of the herbicide simazine, the functional properties of the transducer surface are optimized by an appropriate chemical modification. Using this improved device, a simazine immunoassay has been carried out with a test midpoint of 0.3 ppb and a detection limit of approximately 0.1 ppb. The excellent performance, established manufacturing techniques and the potential for simplification and parallelization make the device attractive for further development
Integrated optical directional coupler sensor for pesticide analysis
Integrated optical transducers for the measurement of interactions between biological molecules and the specific detection of chemical and biochemical species are the subject of growing interest. Targeted applications include environmental monitoring, industrial process control and medical diagnostics. Integrated optical devices are capable of delivering the high detection sensitivity achievable through optical techniques in a compact format, and offer the potential for the detection of several analytes simultaneously through the fabrication of multiple transducers on a single chip. Here we describe the use of a new type of integrated optical sensor applied to the detection of low concentrations of the pesticide atrazine in aqueous solution. The transducer is based on a planar waveguide directional coupler structure fabricated by Ag+-Na+ ion-exchange in a low-index glass substrate. This sensor has the advantage of differential outputs, which gives improved signal-to-noise characteristics and offers the potential for the simultaneous measurement of the real and imaginary parts of the refractive indices of bulk or thin-film analytes
Pathogenic variants of sphingomyelin synthase SMS2 disrupt lipid landscapes in the secretory pathway
Sphingomyelin is a dominant sphingolipid in mammalian cells. Its production in the trans-Golgi traps cholesterol synthesized in the ER to promote formation of a sphingomyelin/sterol gradient along the secretory pathway. This gradient marks a fundamental transition in physical membrane properties that help specify organelle identify and function. We previously identified mutations in sphingomyelin synthase SMS2 that cause osteoporosis and skeletal dysplasia. Here, we show that SMS2 variants linked to the most severe bone phenotypes retain full enzymatic activity but fail to leave the ER owing to a defective autonomous ER export signal. Cells harboring pathogenic SMS2 variants accumulate sphingomyelin in the ER and display a disrupted transbilayer sphingomyelin asymmetry. These aberrant sphingomyelin distributions also occur in patient-derived fibroblasts and are accompanied by imbalances in cholesterol organization, glycerophospholipid profiles, and lipid order in the secretory pathway. We postulate that pathogenic SMS2 variants undermine the capacity of osteogenic cells to uphold nonrandom lipid distributions that are critical for their bone forming activity.Peer reviewe
A Bayesian method for inferring quantitative information from FRET data
<p>Abstract</p> <p>Background</p> <p>Understanding biological networks requires identifying their elementary protein interactions and establishing the timing and strength of those interactions. Fluorescence microscopy and FΓΆrster resonance energy transfer (FRET) have the potential to reveal such information because they allow molecular interactions to be monitored in living cells, but it is unclear how best to analyze FRET data. Existing techniques differ in assumptions, manipulations of data and the quantities they derive. To address this variation, we have developed a versatile Bayesian analysis based on clear assumptions and systematic statistics.</p> <p>Results</p> <p>Our algorithm infers values of the FRET efficiency and dissociation constant, <it>K<sub>d</sub></it>, between a pair of fluorescently tagged proteins. It gives a posterior probability distribution for these parameters, conveying more extensive information than single-value estimates can. The width and shape of the distribution reflects the reliability of the estimate and we used simulated data to determine how measurement noise, data quantity and fluorophore concentrations affect the inference. We are able to show why varying concentrations of donors and acceptors is necessary for estimating <it>K<sub>d</sub></it>. We further demonstrate that the inference improves if additional knowledge is available, for example of the FRET efficiency, which could be obtained from separate fluorescence lifetime measurements.</p> <p>Conclusions</p> <p>We present a general, systematic approach for extracting quantitative information on molecular interactions from FRET data. Our method yields both an estimate of the dissociation constant and the uncertainty associated with that estimate. The information produced by our algorithm can help design optimal experiments and is fundamental for developing mathematical models of biochemical networks.</p
USP18-Based Negative Feedback Control Is Induced by Type I and Type III Interferons and Specifically Inactivates Interferon Ξ± Response
Type I interferons (IFN) are cytokines that are rapidly secreted upon microbial infections and regulate all aspects of the immune response. In humans 15 type I IFN subtypes exist, of which IFN Ξ±2 and IFN Ξ² are used in the clinic for treatment of different pathologies. IFN Ξ±2 and IFN Ξ² are non redundant in their expression and in their potency to exert specific bioactivities. The more recently identified type III IFNs (3 IFN Ξ» or IL-28/IL-29) bind an unrelated cell-type restricted receptor. Downstream of these two receptor complexes is a shared Jak/Stat pathway. Several mechanisms that contribute to the shut down of the IFN-induced signaling have been described at the molecular level. In particular, it has long been known that type I IFN induces the establishment of a desensitized state. In this work we asked how the IFN-induced desensitization integrates into the network built by the multiple type I IFN subtypes and type III IFNs. We show that priming of cells with either type I IFN or type III IFN interferes with the cell's ability to further respond to all IFN Ξ± subtypes. Importantly, primed cells are differentially desensitized in that they retain sensitivity to IFN Ξ². We show that USP18 is necessary and sufficient to induce differential desensitization, by impairing the formation of functional binding sites for IFN Ξ±2. Our data highlight a new type of differential between IFNs Ξ± and IFN Ξ² and underline a cross-talk between type I and type III IFN. This cross-talk could shed light on the reported genetic variation in the IFN Ξ» loci, which has been associated with persistence of hepatitis C virus and patient's response to IFN Ξ±2 therapy
Competitive binding of STATs to receptor phospho-Tyr motifs accounts for altered cytokine responses
Cytokines elicit pleiotropic and non-redundant activities despite strong overlap in their usage of receptors, JAKs and STATs molecules. We use IL-6 and IL-27 to ask how two cytokines activating the same signaling pathway have different biological roles. We found that IL-27 induces more sustained STAT1 phosphorylation than IL-6, with the two cytokines inducing comparable levels of STAT3 phosphorylation. Mathematical and statistical modeling of IL-6 and IL-27 signaling identified STAT3 binding to GP130, and STAT1 binding to IL-27RΞ±, as the main dynamical processes contributing to sustained pSTAT1 levels by IL-27. Mutation of Tyr613 on IL-27RΞ± decreased IL-27-induced STAT1 phosphorylation by 80% but had limited effect on STAT3 phosphorgylation. Strong receptor/STAT coupling by IL-27 initiated a unique gene expression program, which required sustained STAT1 phosphorylation and IRF1 expression and was enriched in classical Interferon Stimulated Genes. Interestingly, the STAT/receptor coupling exhibited by IL-6/IL-27 was altered in patients with systemic lupus erythematosus (SLE). IL-6/IL-27 induced a more potent STAT1 activation in SLE patients than in healthy controls, which correlated with higher STAT1 expression in these patients. Partial inhibition of JAK activation by sub-saturating doses of Tofacitinib specifically lowered the levels of STAT1 activation by IL-6. Our data show that receptor and STATs concentrations critically contribute to shape cytokine responses and generate functional pleiotropy in health and disease
Subtle Alterations in PCNA-Partner Interactions Severely Impair DNA Replication and Repair
Dynamic switching of PCNA-partner interactions is essential for normal DNA replication and repair in yeast
Warming and Resource Availability Shift Food Web Structure and Metabolism
Experimental warming of a marine food web suggests that ocean warming can lead to greater consumer abundance but reduced overall biomass, providing a potentially species-independent response to environmental warming
Association Rate Constants of Ras-Effector Interactions Are Evolutionarily Conserved
Evolutionary conservation of protein interaction properties has been shown to be a valuable indication for functional importance. Here we use homology interface modeling of 10 Ras-effector complexes by selecting ortholog proteins from 12 organisms representing the major eukaryotic branches, except plants. We find that with increasing divergence time the sequence similarity decreases with respect to the human protein, but the affinities and association rate constants are conserved as predicted by the protein design algorithm, FoldX. In parallel we have done computer simulations on a minimal network based on Ras-effector interactions, and our results indicate that in the absence of negative feedback, changes in kinetics that result in similar binding constants have strong consequences on network behavior. This, together with the previous results, suggests an important biological role, not only for equilibrium binding constants but also for kinetics in signaling processes involving Ras-effector interactions. Our findings are important to take into consideration in system biology approaches and simulations of biological networks
- β¦