92 research outputs found

    One‐week escitalopram intake alters the excitation–inhibition balance in the healthy female brain

    Get PDF
    Neural health relies on cortical excitation-inhibition balance (EIB). Previous research suggests a link between increased cortical excitation and neuroplasticity induced by selective serotonin reuptake inhibitors (SSRIs). Whether there are modulations of EIB following SSRI-administration in the healthy human brain, however, remains unclear. Thus, in a randomized double-blind study, we administered a clinically relevant dose of 20 mg escitalopram for 7 days (time when steady state is achieved) in 59 healthy women (28 escitalopram, 31 placebo) on oral contraceptives. We acquired resting-state electroencephalography data at baseline, after a single dose, and at steady state. We assessed 1/f slope of the power spectrum as a marker of EIB, compared individual trajectories of 1/f slope changes contrasting single dose and 1-week drug intake, and tested the relationship of escitalopram plasma levels and cortical excitatory and inhibitory balance shifts. Escitalopram-intake was associated with decreased 1/f slope, indicating an EIB shift in favor of excitation. Furthermore, 1/f slope at baseline and after a single dose of escitalopram was associated with 1/f slope at steady state. Higher plasma escitalopram levels at a single dose were associated with better maintenance of these EIB changes throughout the drug administration week. These findings demonstrate the potential for 1/f slope to predict individual cortical responsivity to SSRIs and widen the lens through which we map the human brain by testing an interventional psychopharmacological design in a clearly defined endocrinological state

    The attention-emotion interaction in healthy female participants on oral contraceptives during 1-week escitalopram intake

    Get PDF
    Previous findings in healthy humans suggest that selective serotonin reuptake inhibitors (SSRIs) modulate emotional processing via earlier changes in attention. However, many previous studies have provided inconsistent findings. One possible reason for such inconsistencies is that these studies did not control for the influence of either sex or sex hormone fluctuations. To address this inconsistency, we administered 20 mg escitalopram or placebo for seven consecutive days in a randomized, double-blind, placebo-controlled design to sixty healthy female participants with a minimum of 3 months oral contraceptive (OC) intake. Participants performed a modified version of an emotional flanker task before drug administration, after a single dose, after 1 week of SSRI intake, and after a 1-month wash-out period. Supported by Bayesian analyses, our results do not suggest a modulatory effect of escitalopram on behavioral measures of early attentional-emotional interaction in female individuals with regular OC use. While the specific conditions of our task may be a contributing factor, it is also possible that a practice effect in a healthy sample may mask the effects of escitalopram on the attentional-emotional interplay. Consequently, 1 week of escitalopram administration may not modulate attention toward negative emotional distractors outside the focus of attention in healthy female participants taking OCs. While further research in naturally cycling females and patient samples is needed, our results represent a valuable contribution toward the preclinical investigation of antidepressant treatment

    Decreased thalamo-cortico connectivity during an implicit sequence motor learning task and 7 days escitalopram intake

    Get PDF
    Evidence suggests that selective serotonin reuptake inhibitors (SSRIs) reorganize neural networks via a transient window of neuroplasticity. While previous findings support an effect of SSRIs on intrinsic functional connectivity, little is known regarding the influence of SSRI-administration on connectivity during sequence motor learning. To investigate this, we administered 20 mg escitalopram or placebo for 1-week to 60 healthy female participants undergoing concurrent functional magnetic resonance imaging and sequence motor training in a double-blind randomized controlled design. We assessed task-modulated functional connectivity with a psycho-physiological interaction (PPI) analysis in the thalamus, putamen, cerebellum, dorsal premotor, primary motor, supplementary motor, and dorsolateral prefrontal cortices. Comparing an implicit sequence learning condition to a control learning condition, we observed decreased connectivity between the thalamus and bilateral motor regions after 7 days of escitalopram intake. Additionally, we observed a negative correlation between plasma escitalopram levels and PPI connectivity changes, with higher escitalopram levels being associated with greater thalamo-cortico decreases. Our results suggest that escitalopram enhances network-level processing efficiency during sequence motor learning, despite no changes in behaviour. Future studies in more diverse samples, however, with quantitative imaging of neurochemical markers of excitation and inhibition, are necessary to further assess neural responses to escitalopram

    Restoration of Podocyte Structure and Improvement of Chronic Renal Disease in Transgenic Mice Overexpressing Renin

    Get PDF
    Proteinuria is a major marker of the decline of renal function and an important risk factor of coronary heart disease. Elevated proteinuria is associated to the disruption of slit-diaphragm and loss of podocyte foot processes, structural alterations that are considered irreversible. The objective of the present study was to investigate whether proteinuria can be reversed and to identify the structural modifications and the gene/protein regulation associated to this reversal.We used a novel transgenic strain of mouse (RenTg) that overexpresses renin at a constant high level. At the age of 12-month, RenTg mice showed established lesions typical of chronic renal disease such as peri-vascular and periglomerular inflammation, glomerular ischemia, glomerulosclerosis, mesangial expansion and tubular dilation. Ultrastructural analysis indicated abnormal heterogeneity of basement membrane thickness and disappearance of podocyte foot processes. These structural alterations were accompanied by decreased expressions of proteins specific of podocyte (nephrin, podocin), or tubular epithelial cell (E-cadherin and megalin) integrity. In addition, since TGFbeta is considered the major pro-fibrotic agent in renal disease and since exogenous administration of BMP7 is reported to antagonize the TGFbeta-induced phenotype changes in kidney, we have screened the expressions of several genes belonging in the TGFbeta/BMP superfamily. We found that the endogenous inhibitors of BMPs such as noggin and Usag-1 were several-fold activated inhibiting the action of BMPs and thus reinforcing the deleterious action of TGFbeta.Treatment with an AT1 receptor antagonist, at dose that did not decrease arterial pressure, gradually reduced albuminuria. This decrease was accompanied by re-expression of podocin, nephrin, E-cadherin and megalin, and reappearance of podocyte foot processes. In addition, expressions of noggin and Usag-1 were markedly decreased, permitting thus activation of the beneficial action of BMPs.These findings show that proteinuria and alterations in the expression of proteins involved in the integrity and function of glomerular and renal epithelial phenotype are reversible events when the local action of angiotensin II is blocked, and provide hope that chronic renal disease can be efficiently treated

    Keratinocyte Growth Factor Induces Gene Expression Signature Associated with Suppression of Malignant Phenotype of Cutaneous Squamous Carcinoma Cells

    Get PDF
    Keratinocyte growth factor (KGF, fibroblast growth factor-7) is a fibroblast-derived mitogen, which stimulates proliferation of epithelial cells. The expression of KGF by dermal fibroblasts is induced following injury and it promotes wound repair. However, the role of KGF in cutaneous carcinogenesis and cancer progression is not known. We have examined the role of KGF in progression of squamous cell carcinoma (SCC) of the skin. The expression of KGF receptor (KGFR) mRNA was lower in cutaneous SCCs (n = 6) than in normal skin samples (n = 6). Expression of KGFR mRNA was detected in 6 out of 8 cutaneous SCC cell lines and the levels were downregulated by 24-h treatment with KGF. KGF did not stimulate SCC cell proliferation, but it reduced invasion of SCC cells through collagen. Gene expression profiling of three cutaneous SCC cell lines treated with KGF for 24 h revealed a specific gene expression signature characterized by upregulation of a set of genes specifically downregulated in SCC cells compared to normal epidermal keratinocytes, including genes with tumor suppressing properties (SPRY4, DUSP4, DUSP6, LRIG1, PHLDA1). KGF also induced downregulation of a set of genes specifically upregulated in SCC cells compared to normal keratinocytes, including genes associated with tumor progression (MMP13, MATN2, CXCL10, and IGFBP3). Downregulation of MMP-13 and KGFR expression in SCC cells and HaCaT cells was mediated via ERK1/2. Activation of ERK1/2 in HaCaT cells and tumorigenic Ha-ras-transformed HaCaT cells resulted in downregulation of MMP-13 and KGFR expression. These results provide evidence, that KGF does not promote progression of cutaneous SCC, but rather suppresses the malignant phenotype of cutaneous SCC cells by regulating the expression of several genes differentially expressed in SCC cells, as compared to normal keratinocytes

    VITA-D: Cholecalciferol substitution in vitamin D deficient kidney transplant recipients: A randomized, placebo-controlled study to evaluate the post-transplant outcome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vitamin D does not only regulate calcium homeostasis but also plays an important role as an immune modulator. It influences the immune system through the induction of immune shifts and regulatory cells resulting in immunologic tolerance. As such, vitamin D is thought to exert beneficial effects within the transplant setting, especially in kidney transplant recipients, considering the high prevalence of vitamin D deficiency in kidney transplant recipients.</p> <p>Methods/Design</p> <p>The VITA-D study, a randomized, placebo-controlled, double-blind study with two parallel groups including a total of 200 kidney transplant recipients, is designed to investigate the immunomodulatory and renoprotective effects of cholecalciferol (vitamin D<sub>3</sub>) within the transplant setting. Kidney transplant recipients found to have vitamin D deficiency defined as 25-hydroxyvitamin D<sub>3 </sub>< 50 nmol per liter will be randomly assigned to receive either oral cholecalciferol therapy or placebo and will be followed for one year. Cholecalciferol will be administered at a dose of 6800 International Units daily over a time period of one year.</p> <p>The objective is to evaluate the influence of vitamin D<sub>3 </sub>substitution in vitamin D deficient kidney transplant recipients on the post-transplant outcome. As a primary endpoint glomerular filtration rate calculated with the MDRD formula (modification of diet in renal disease) one year after kidney transplantation will be evaluated. Incidence of acute rejection episodes, and the number and severity of infections (analyzed by means of C-reactive protein) within the first year after transplantation will be monitored as well. As a secondary endpoint the influence of vitamin D<sub>3 </sub>on bone mineral density within the first year post-transplant will be assessed. Three DXA analyses will be performed, one within the first four weeks post-transplant, one five months and one twelve months after kidney transplantation.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov NCT00752401</p
    corecore