3,190 research outputs found

    Mary G. Phelan to Mr. Meredith (1 October 1962)

    Get PDF
    https://egrove.olemiss.edu/mercorr_pro/1342/thumbnail.jp

    RMD-QOSM: The NSIS Quality-of-Service Model for Resource Management in Diffserv

    Get PDF
    This document describes a Next Steps in Signaling (NSIS) Quality-of- Service (QoS) Model for networks that use the Resource Management in Diffserv (RMD) concept. RMD is a technique for adding admission control and preemption function to Differentiated Services (Diffserv) networks. The RMD QoS Model allows devices external to the RMD network to signal reservation requests to Edge nodes in the RMD network. The RMD Ingress Edge nodes classify the incoming flows into traffic classes and signals resource requests for the corresponding traffic class along the data path to the Egress Edge nodes for each flow. Egress nodes reconstitute the original requests and continue forwarding them along the data path towards the final destination. In addition, RMD defines notification functions to indicate overload situations within the domain to the Edge nodes

    Social Conditions as Fundamental Causes of Disease

    Get PDF
    Over the last several decades, epidemiological studies have been enormously successful in identifying risk factors for major diseases. However, most of this research has focused attention on risk factors that are relatively proximal causes of disease such as diet, cholesterol level, exercise and the like. We question the emphasis on such individually-based risk factors and argue that greater attention must be paid to basic social conditions if health reform is to have its maximum effect in the time ahead. There are two reasons for this claim. First we argue that individually-based risk factors must be contextualized, by examining what puts people at risk of risks, if we are to craft effective interventions and improve the nation's health. Second, we argue that social factors such as socioeconomic status and social support are likely 'fundamental causes" of disease that, because they embody access to important resources, affect multiple disease outcomes throughmultiple mechanisms, and consequently maintain an association with disease even when intervening mechanisms change. Without careful attention to these possibilities, we run the risk of imposing individually-based intervention strategies that are ineffective and of missing opportunities to adopt broad-based societal interventions that could produce substantial health benefits for our citizen

    Hilbert transform, spectral filters and option pricing

    Get PDF
    We show how spectral filters can improve the convergence of numerical schemes which use discrete Hilbert transforms based on a sinc function expansion, and thus ultimately on the fast Fourier transform. This is relevant, for example, for the computation of fluctuation identities, which give the distribution of the maximum or the minimum of a random path, or the joint distribution at maturity with the extrema staying below or above barriers. We use as examples the methods by Feng and Linetsky (Math Finance 18(3):337–384, 2008) and Fusai et al. (Eur J Oper Res 251(4):124–134, 2016) to price discretely monitored barrier options where the underlying asset price is modelled by an exponential Lévy process. Both methods show exponential convergence with respect to the number of grid points in most cases, but are limited to polynomial convergence under certain conditions. We relate these rates of convergence to the Gibbs phenomenon for Fourier transforms and achieve improved results with spectral filtering

    Fluctuation identities with continuous monitoring and their application to the pricing of barrier options

    Get PDF
    We present a numerical scheme to calculate fluctuation identities for exponential Lévy processes in the continuous monitoring case. This includes the Spitzer identities for touching a single upper or lower barrier, and the more difficult case of the two-barriers exit problem. These identities are given in the Fourier-Laplace domain and require numerical inverse transforms. Thus we cover a gap in the literature that has mainly studied the discrete monitoring case; indeed, there are no existing numerical methods that deal with the continuous case. As a motivating application we price continuously monitored barrier options with the underlying asset modelled by an exponential Lévy process. We perform a detailed error analysis of the method and develop error bounds to show how the performance is limited by the truncation error of the sinc-based fast Hilbert transform used for the Wiener–Hopf factorisation. By comparing the results for our new technique with those for the discretely monitored case (which is in the Fourier-z domain) as the monitoring time step approaches zero, we show that the error convergence with continuous monitoring represents a limit for the discretely monitored scheme

    Pricing methods for α-quantile and perpetual early exercise options based on Spitzer identities

    Get PDF
    We present new numerical schemes for pricing perpetual Bermudan and American options as well as α-quantile options. This includes a new direct calculation of the optimal exercise boundary for early-exercise options. Our approach is based on the Spitzer identities for general Lévy processes and on the Wiener–Hopf method. Our direct calculation of the price of α-quantile options combines for the first time the Dassios–Port–Wendel identity and the Spitzer identities for the extrema of processes. Our results show that the new pricing methods provide excellent error convergence with respect to computational time when implemented with a range of Lévy processes

    Mutations in shaking-B prevent electrical synapse formation in the Drosophila giant fiber system

    Get PDF
    The giant fiber system (GFS) is a simple network of neurons that mediates visually elicited escape behavior in Drosophila. The giant fiber (GF), the major component of the system, is a large, descending interneuron that relays visual stimuli to the motoneurons that innervate the tergotrochanteral jump muscle (TTM) and dorsal longitudinal flight muscles (DLMs). Mutations in the neural transcript from the shaking-B locus abolish the behavioral response by disrupting transmission at some electrical synapses in the GFS. This study focuses on the role of the gene in the development of the synaptic connections. Using an enhancer-trap line that expresses lacZ in the GFs, we show that the neurons develop during the first 30 hr of metamorphosis. Within the next 15 hr, they begin to form electrical synapses, as indicated by the transfer of intracellularly injected Lucifer yellow. The GFs dye-couple to the TTM motoneuron between 30 and 45 hr of metamorphosis, to the peripherally synapsing interneuron that drives the DLM motoneurons at approximately 48 hr, and to giant commissural interneurons in the brain at approximately 55 hr. Immunocytochemistry with shaking-B peptide antisera demonstrates that the expression of shaking-B protein in the region of GFS synapses coincides temporally with the onset of synaptogenesis; expression persists thereafter. The mutation shak-B2, which eliminates protein expression, prevents the establishment of dye coupling shaking-B, therefore, is essential for the assembly and/or maintenance of functional gap junctions at electrical synapses in the GFS

    Altered mitochondrial function and energy metabolism is associated with a radioresistant phenotype in oesophageal adenocarcinoma

    Get PDF
    Neoadjuvant chemoradiation therapy (CRT) is increasingly the standard of care for locally advanced oesophageal cancer. A complete pathological response to CRT is associated with a favourable outcome. Radiation therapy is important for local tumour control, however, radioresistance remains a substantial clinical problem. We hypothesise that alterations in mitochondrial function and energy metabolism are involved in the radioresistance of oesophageal adenocarcinoma (OAC). To investigate this, we used an established isogenic cell line model of radioresistant OAC. Radioresistant cells (OE33 R) demonstrated significantly increased levels of random mitochondrial mutations, which were coupled with alterations in mitochondrial function, size, morphology and gene expression, supporting a role for mitochondrial dysfunction in the radioresistance of this model. OE33 R cells also demonstrated altered bioenergetics, demonstrating significantly increased intracellular ATP levels, which was attributed to enhanced mitochondrial respiration. Radioresistant cells also demonstrated metabolic plasticity, efficiently switching between the glycolysis and oxidative phosphorylation energy metabolism pathways, which were accompanied by enhanced clonogenic survival. This data was supported in vivo, in pre-treatment OAC tumour tissue. Tumour ATP5B expression, a marker of oxidative phosphorylation, was significantly increased in patients who subsequently had a poor pathological response to neoadjuvant CRT. This suggests for the first time, a role for specific mitochondrial alterations and metabolic remodelling in the radioresistance of OAC
    • …
    corecore