69 research outputs found

    Gas adsorption and dynamics in Pillared Graphene Frameworks

    Get PDF
    We thank prof. Marco Frasconi for advice on the kind of moieties to be used as pillars. N.M.P. is supported by the European Research Council PoC 2015 “Silkene” No. 693670, by the European Commission H2020 under the Graphene Flagship Core 1 No. 696656 (WP14 “Polymer Nanocomposites”) and under the Fet Proactive “Neurofibres” No. 732344. S.T and G.G. acknowledge funding from previous WP14 “Polymer Nanocomposites” grant. Access to computing and storage facilities owned by parties and projects contributing to the Czech National Grid Infrastructure MetaCentrum provided under the programme “Projects of Large Research, Development, and Innovations Infrastructures” (CESNET LM2015042), is greatly appreciated (https://www.metacentrum.cz/en/)

    Adverse Perinatal Outcome in Subsequent Pregnancy after Stillbirth by Placental Vascular Disorders

    Get PDF
    Objective: To evaluate outcome in the pregnancy following a stillbirth (SB) by a placental vascular disorders. Study Design: A prospective, observational, multicenter study was conducted in woman with a history of stillbirth (> 22 weeks) between 2005 and June 2013, in 3 Italian University Hospitals. Causes of SB were previously identified after extensive investigations. Pregnant women were enrolled within the first trimester. The main outcome was "adverse neonatal outcome", including perinatal death, fetal growth restriction, early preterm birth <33+6 weeks, hypoxicischemic encephalopathy, intracranial hemorrhage or respiratory distress. Results: Out of 364 index pregnancies, 320 women (87.9%) had a subsequent pregnancy during the study period. Forty-seven had an early pregnancy loss. Out of 273 babies, 67 (24.5%) had an adverse perinatal outcome, including 1 SB and 1 early neonatal death (3.7/1000). Women who had a SB related to placental vascular disorders (39.6%), were at higher risk of an adverse neonatal outcome compared with women whose SB was unexplained or resulted from other causes (Adj. OR = 2.1, 95%CI: 1.2-3.8). Moreover, also obesity independently predicts an adverse perinatal outcome (Adj OR = 2.1, 95%CI: 1.1-4.3). Conclusion: When previous SB is related to placental vascular disorders there is a high risk for adverse neonatal outcomes in the subsequent pregnancy. Maternal obesity is an additional risk factor

    A novel combined experimental and multiscale theoretical approach to unravel the structure of SiC/SiOx core/shell nanowires for their optimal design

    Get PDF
    In this work we propose a realistic model of nanometer-thick SiC/SiOxcore/shell nanowires (NWs) using a combined first-principles and experimental approach. SiC/SiOxcore/shell NWs were first synthesised by a low-cost carbothermal method and their chemical-physical experimental analysis was accomplished by recording X-ray absorption near-edge spectra. In particular, the K-edge absorption lineshapes of C, O, and Si are used to validate our computational model of the SiC/SiOxcore/shell NW architectures, obtained by a multiscale approach, including molecular dynamics, tight-binding and density functional simulations. Moreover, we present ab initio calculations of the electronic structure of hydrogenated SiC and SiC/SiOxcore/shell NWs, studying the modification induced by several different substitutional defects and impurities into both the surface and the interfacial region between the SiC core and the SiOxshell. We find that on the one hand the electron quantum confinement results in a broadening of the band gap, while hydroxyl surface terminations decrease it. This computational investigation shows that our model of SiC/SiOxcore/shell NWs is capable to deliver an accurate interpretation of the recorded X-ray absorption near-edge spectra and proves to be a valuable tool towards the optimal design and application of these nanosystems in actual devices

    Nanomechanics of individual aerographite tetrapods

    Get PDF
    R.A., O.L. and K.S. would like to thank the German Research Foundation (DFG) for the financial support under schemes AD 183/17-1 and SFB 986-TP-B1, respectively, and the Graphene FET Flagship. R.M. and D.E. would like to thank for financial support from Latvian Council of Science, no. 549/2012. N.M.P. is supported by the European Research Council (ERC PoC 2015 SILKENE no. 693670) and by the European Commission H2020 under the Graphene Flagship (WP14 ‘Polymer Composites’, no. 696656) and under the FET Proactive (‘Neurofibres’ no. 732344). S.S. acknowledges support from SILKENE

    Vibroacoustic Measurements and Simulations Applied to External Gear Pumps. An Integrated Simplified Approach

    No full text
    This paper describes the development phases of a numerical-experimental integrated approach aimed at obtaining sufficiently accurate predictions of the noise field emitted by an external gear pump by means of some vibration measurements on its external casing. Harmonic response methods and vibroacoustic analyses were considered as the main tools of this methodology. FFT acceleration spectra were experimentally acquired only in some positions of a 8.5 cc/rev external gear pump casing for some working conditions and considered as external excitation boundary conditions for a FE quite simplified vibroacoustic model. The emitted noise field was computed considering the pump as a ‘black box’, without taking into account the complex dynamics of the gear tooth meshing process and the consequent fluid pressure and load distribution. Sound power tests, based on sound intensity measurements, as well as sound pressure measurements in some positions around the pump casing were performed for validation purposes. The comparisons between numerical and experimental results confirmed the potentiality of this approach in offering a good compromise between noise prediction accuracy and reduction of experimental and modelling requirements

    Mathematical programming formulation for approximate simulation of closed-loop systems

    No full text
    Closed-loops systems have been analyzed by means of Markov theory, discrete event simulation models, renewal theory and random walks. The dynamics of discrete event systems (DES) has been recently addressed with the mathematical programming technique. In particular, DESs are mapped into a mixed integer linear programming (MILP) formulation, the optimal solution of which represents the trajectory of the DES itself, i.e., the output of a standard simulation. This paper proposes approximate linear programming–based models to simulate and optimize the closed–loop system behavior. The approximation has been obtained by relaxing the constraints that keep the number of parts circulating in the system constant. In the relaxed model, the fixed population aspect, which characterizes the system, is indirectly modeled by means of continuous time variables that limit the entering (leaving) of parts into (from) the system. The main advantage of the proposed approximate simulation model is that it preserves its linearity even when used for optimization. Numerical experiments show the accuracy of the proposed models for the optimal pallet allocation problem
    corecore