149 research outputs found

    Conversion of t11t13 CLA into c9t11 CLA in Caco-2 Cells and Inhibition by Sterculic Oil

    Get PDF
    Background : Conjugated linoleic acids (CLA), and principally c9t11 CLA, are suspected to have numerous preventive properties regarding non-infectious pathologies such as inflammatory diseases, atherosclerosis and several types of cancer. C9t11 CLA is produced in the rumen during biohydrogenation of linoleic acid, but can also be synthesized in mammalian tissues from trans-vaccenic acid (C18:1 t11) through the action of delta-9 desaturase (D9D). For several years, it is also known that c9t11 CLA can be synthesized from conjugated linolenic acids (CLnA), i.e. c9t11c13 CLnA and c9t11t13 CLnA. This study aimed at investigating to which extent and by which route c9t11 CLA can be produced from another isomer of CLA, the t11t13 CLA that is structurally very similar to c9t11t13 CLnA, in Caco-2 cells

    Interleukin-6 and Cyclooxygenase-2 downregulation by fatty-acid fractions of Ranunculus constantinopolitanus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Medicinal plants represent alternative means for the treatment of several chronic diseases, including inflammation. The genus <it>Ranunculus</it>, a representative of the Ranunculaceae family, has been reported to possess anti-inflammatory, analgesic, antiviral, antibacterial, antiparasitic and antifungal activities, possibly due to the presence of anemonin and other. Different studies have shown the occurrence of unusual fatty acids (FAs) in Ranunculaceae; however, their therapeutic role has not been investigated. The purpose of this study is to characterize potential anti-inflammatory bioactivities in <it>Ranunculus constantinopolitanus </it>D'Urv., traditionally used in Eastern Mediterranean folk medicine.</p> <p>Methods</p> <p>The aerial part of <it>R. constantinopolitanus </it>was subjected to methanol (MeOH) extraction and solvent fractionation. The bioactive fraction (I.2) was further fractionated using column chromatography, and the biologically active subfraction (Y<sub>2+3</sub>) was identified using infrared (IR) spectroscopy, nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS). The effects of I.2 and Y<sub>2+3 </sub>on cell viability were studied in mouse mammary epithelial SCp2 cells using trypan blue exclusion method. To study the anti-inflammatory activities of I.2 and Y<sub>2+3</sub>, their ability to reduce interleukin (IL)-6 levels was assessed in endotoxin (ET)-stimulated SCp2 cells using enzyme-linked immunosorbent assay (ELISA). In addition, the ability of Y<sub>2+3 </sub>to reduce cyclooxygenase (COX)-2 expression was studied in IL-1-treated mouse intestinal epithelial Mode-K cells via western blotting. Data were analyzed by one-way analysis of variance (ANOVA), Student-Newman-Keuls (SNK), Tukey HSD, two-sample t-test and Dunnett t-tests for multiple comparisons.</p> <p>Results</p> <p>The chloroform fraction (I.2) derived from crude MeOH extract of the plant, in addition to Y<sub>2+3</sub>, a FA mix isolated from this fraction and containing palmitic acid, C18:2 and C18:1 isomers and stearic acid (1:5:8:1 ratio), reduced ET-induced IL-6 levels in SCp2 cells without affecting cell viability or morphology. When compared to fish oil, conjugated linoleic acid (CLA) and to individual FAs as palmitic, linoleic, oleic and stearic acid or to a mix of these FAs (1:5:8:1 ratio), Y<sub>2+3 </sub>exhibited higher potency in reducing ET-induced IL-6 levels within a shorter period of time. Y<sub>2+3</sub> also reduced COX-2 expression in IL-1-treated Mode-K cells.</p> <p>Conclusion</p> <p>Our studies demonstrate the existence of potential anti-inflammatory bioactivities in <it>R. constantinopolitanus </it>and attribute them to a FA mix in this plant.</p

    Evaluation and Characterization of Bacterial Metabolic Dynamics with a Novel Profiling Technique, Real-Time Metabolotyping

    Get PDF
    BACKGROUND: Environmental processes in ecosystems are dynamically altered by several metabolic responses in microorganisms, including intracellular sensing and pumping, battle for survival, and supply of or competition for nutrients. Notably, intestinal bacteria maintain homeostatic balance in mammals via multiple dynamic biochemical reactions to produce several metabolites from undigested food, and those metabolites exert various effects on mammalian cells in a time-dependent manner. We have established a method for the analysis of bacterial metabolic dynamics in real time and used it in combination with statistical NMR procedures. METHODOLOGY/PRINCIPAL FINDINGS: We developed a novel method called real-time metabolotyping (RT-MT), which performs sequential (1)H-NMR profiling and two-dimensional (2D) (1)H, (13)C-HSQC (heteronuclear single quantum coherence) profiling during bacterial growth in an NMR tube. The profiles were evaluated with such statistical methods as Z-score analysis, principal components analysis, and time series of statistical TOtal Correlation SpectroScopY (TOCSY). In addition, using 2D (1)H, (13)C-HSQC with the stable isotope labeling technique, we observed the metabolic kinetics of specific biochemical reactions based on time-dependent 2D kinetic profiles. Using these methods, we clarified the pathway for linolenic acid hydrogenation by a gastrointestinal bacterium, Butyrivibrio fibrisolvens. We identified trans11, cis13 conjugated linoleic acid as the intermediate of linolenic acid hydrogenation by B. fibrisolvens, based on the results of (13)C-labeling RT-MT experiments. In addition, we showed that the biohydrogenation of polyunsaturated fatty acids serves as a defense mechanism against their toxic effects. CONCLUSIONS: RT-MT is useful for the characterization of beneficial bacterium that shows potential for use as probiotic by producing bioactive compounds

    ISSN exercise & sport nutrition review: research & recommendations

    Get PDF
    Sports nutrition is a constantly evolving field with hundreds of research papers published annually. For this reason, keeping up to date with the literature is often difficult. This paper is a five year update of the sports nutrition review article published as the lead paper to launch the JISSN in 2004 and presents a well-referenced overview of the current state of the science related to how to optimize training and athletic performance through nutrition. More specifically, this paper provides an overview of: 1.) The definitional category of ergogenic aids and dietary supplements; 2.) How dietary supplements are legally regulated; 3.) How to evaluate the scientific merit of nutritional supplements; 4.) General nutritional strategies to optimize performance and enhance recovery; and, 5.) An overview of our current understanding of the ergogenic value of nutrition and dietary supplementation in regards to weight gain, weight loss, and performance enhancement. Our hope is that ISSN members and individuals interested in sports nutrition find this review useful in their daily practice and consultation with their clients
    corecore