9,020 research outputs found

    Selection of AGN candidates in the GOODS-South Field through SPITZER/MIPS 24 μ\mum variability

    Get PDF
    We present a study of galaxies showing mid-infrared variability in data taken in the deepest Spitzer/MIPS 24 μ\mum surveys in the GOODS-South field. We divide the dataset in epochs and subepochs to study the long-term (months-years) and the short-term (days) variability. We use a χ2\chi^2-statistics method to select AGN candidates with a probability \leq 1% that the observed variability is due to statistical errors alone. We find 39 (1.7% of the parent sample) sources that show long-term variability and 55 (2.2% of the parent sample) showing short-term variability. That is, 0.03 sources ×\times arcmin2^{-2} for both, long-term and short-term variable sources. After removing the expected number of false positives inherent to the method, the estimated percentages are 1.0% and 1.4% of the parent sample for the long-term and short-term respectively. We compare our candidates with AGN selected in the X-ray and radio bands, and AGN candidates selected by their IR emission. Approximately, 50% of the MIPS 24 μ\mum variable sources would be identified as AGN with these other methods. Therefore, MIPS 24 μ\mum variability is a new method to identify AGN candidates, possibly dust obscured and low luminosity AGN, that might be missed by other methods. However, the contribution of the MIPS 24 μ\mum variable identified AGN to the general AGN population is small (\leq 13%) in GOODS-South.Comment: Accepted for publication in MNRA

    Chloroplast damage induced by the inhibition of fatty acid synthesis triggers autophagy in chlamydomonas

    Get PDF
    Fatty acids are synthesized in the stroma of plant and algal chloroplasts by the fatty acid synthase complex. Newly synthesized fatty acids are then used to generate plastidial lipids that are essential for chloroplast structure and function. Here, we show that inhibition of fatty acid synthesis in the model alga Chlamydomonas reinhardtii activates autophagy, a highly conserved catabolic process by which cells degrade intracellular material under adverse conditions to maintain cell homeostasis. Treatment of Chlamydomonas cells with cerulenin, a specific fatty acid synthase inhibitor, stimulated lipidation of the autophagosome protein ATG8 and enhanced autophagic flux. We found that inhibition of fatty acid synthesis decreased monogalactosyldiacylglycerol abundance, increased lutein content, down-regulated photosynthesis, and increased the production of reactive oxygen species. Electron microscopy revealed a high degree of thylakoid membrane stacking in cerulenin-treated cells. Moreover, global transcriptomic analysis of these cells showed an up-regulation of genes encoding chloroplast proteins involved in protein folding and oxidative stress and the induction of major catabolic processes, including autophagy and proteasome pathways. Thus, our results uncovered a link between lipid metabolism, chloroplast integrity, and autophagy through a mechanism that involves the activation of a chloroplast quality control system.Ministerio de Economía y Competitividad BFU2015-68216-PJunta de Andalucía CVI-7336, BIO2015-74432-JI

    Reconciling a significant hierarchical assembly of massive early-type galaxies at z<~1 with mass downsizing

    Get PDF
    Hierarchical models predict that massive early-type galaxies (mETGs) are the latest systems to be in place into the cosmic scenario (at z<~0.5), conflicting with the observational phenomenon of galaxy mass downsizing, which poses that the most massive galaxies have been in place earlier that their lower-mass counterparts (since z~0.7). We have developed a semi-analytical model to test the feasibility of the major-merger origin hypothesis for mETGs, just accounting for the effects on galaxy evolution of the major mergers strictly reported by observations. The most striking model prediction is that very few present-day mETGs have been really in place since z~1, because ~90% of the mETGs existing at z~1 are going to be involved in a major merger between z~1 and the present. Accounting for this, the model derives an assembly redshift for mETGs in good agreement with hierarchical expectations, reproducing observational mass downsizing trends at the same time.Comment: 2 pages, 1 figure, Proceedings of Symposium 2 of JENAM 2010, "Environment and the Formation of Galaxies: 30 years later", ed. I. Ferreras and A. Pasquali, Astrophysics & Space Science Proceedings, Springe

    How is star formation fed and quenched in massive galaxies at high redshift?

    Get PDF
    Observations of the location and kinematics of the atomic gas (HI) and the continuum radio emission from high redshift galaxies would mean a huge step forward in our understanding of galaxy evolution. We now have a secure global picture of the stellar content of massive galaxies and their precursors up to z~4. But we still have to understand why star formation in these systems started early and quenched some time after, a scenario known as downsizing which, at face value, conflicts with the predictions from the current hierarchical galaxy formation paradigm. SKA will provide the missing piece to solve the puzzle: information about the amounts of gas falling into galaxies to form stars, as well as data to measure when and how the star formation turns off as the gas stops cooling due to still to be understood feedback mechanisms, such as (radio mode) obscured nuclear activity.PGP-G acknowledges support from Spanish Government MINECO AYA2012-31277 Grant. JIGS acknowledges support from the Spanish Ministry for Economy and Competitiveness AYA2011-29517-C03-02. AFS acknowledges support from the Spanish Ministry for Economy and Competitiveness and FEDER funds through grants AYA2010-22111-C03-02 and AYA2013-48623-C2-2, and Generalitat Valenciana project PROMETEOII/2014/060.Peer reviewe

    Formation of S0 galaxies through mergers. Bulge-disc structural coupling resulting from major mergers

    Get PDF
    Observations reveal a strong structural coupling between bulge and disc in S0 galaxies, which seems difficult to explain if they have formed from supposedly catastrophic events such as major mergers. We face this question by quantifying the bulge-disc coupling in dissipative simulations of major and minor mergers that result in realistic S0s. We have studied the dissipative N-body binary merger simulations from the GalMer database that give rise to realistic, relaxed E/S0 and S0 remnants (67 major and 29 minor mergers). We simulate surface brightness profiles of these S0-like remnants in the K-band, mimicking typical observational conditions, to perform bulge-disc decompositions analogous to those carried out in real S0s. The global bulge-disc structure of these remnants has been compared with real data, and they distribute in the B/T - r_e - h_d parameter space consistently with real bright S0s, where B/T is the bulge-to-total luminosity ratio, r_e is the bulge effective radius, and h_d is the disc scalelength. Major mergers can rebuild a bulge-disc coupling in the remnants after having destroyed the structures of the progenitors, whereas minor mergers directly preserve them. Remnants exhibit B/T and r_e/h_d spanning a wide range of values, and their distribution is consistent with observations. Many remnants have bulge Sersic indices ranging 1<n<2, flat appearance, and contain residual star formation in embedded discs, a result which agrees with the presence of pseudobulges in real S0s. Contrary to the popular view, mergers (and in particular, major events) can result in S0 remnants with realistically coupled bulge-disc structures in less than ~3 Gyr. In conclusion, the bulge-disc coupling and the presence of pseudobulges in real S0s cannot be used as an argument against the possible major-merger origin of these galaxies.Comment: 23 pages, accepted for publication in Astronomy and Astrophysics (version after minor language corrections

    Phosphorus Availability Regulates TORC1 Signaling via LST8 in Chlamydomonas

    Get PDF
    Target of rapamycin complex 1 (TORC1) is a central regulator of cell growth. It balances anabolic and catabolic processes in response to nutrients, growth factors, and energy availability. Nitrogen- and carbon-containing metabolites have been shown to activate TORC1 in yeast, animals, and plants. Here, we show that phosphorus (P) regulates TORC1 signaling in the model green alga Chlamydomonas (Chlamydomonas reinhardtii) via LST8, a conserved TORC1 subunit that interacts with the kinase domain of TOR. P starvation results in a sharp decrease in LST8 abundance and downregulation of TORC1 activity. A hypomorphic lst8 mutation resulted in decreased LST8 abundance, and it both reduced TORC1 signaling and altered the cellular response to P starvation. Additionally, we found that LST8 levels and TORC1 activity were not properly regulated in a mutant defective in the transcription factor PSR1, which is the major mediator of P deprivation responses in Chlamydomonas. Unlike wild-type cells, the psr1 mutant failed to downregulate LST8 abundance and TORC1 activity when under P limitation. These results identify PSR1 as an upstream regulator of TORC1 and demonstrate that TORC1 is a key component in P signaling in Chlamydomonas.España Ministerio de Economía y Competitividad (grants BFU2015-68216-P and PGC2018-099048- B-100 to J.L.C. and grant BIO2015-74432-JIN to M.E.P.-P.)National Science Foundation (CAREER award MCB-1552522 to L.M.H. and grant MCB-1616820 to J.G.U.)European Commission (grant number 750996

    Characterization of AGN and their hosts in the Extended Groth Strip: a multiwavelength analysis

    Get PDF
    We have employed a reliable technique of classification of Active Galactic Nuclei (AGN) based on the fit of well-sampled spectral energy distributions (SEDs) with a complete set of AGN and starburst galaxy templates. We have compiled ultraviolet, optical, and infrared data for a sample of 116 AGN originally selected for their X-ray and mid-infrared emissions (96 with single detections and 20 with double optical counterparts). This is the most complete compilation of multiwavelength data for such a big sample of AGN in the Extended Groth Strip (EGS). Through these SEDs, we are able to obtain highly reliable photometric redshifts and to distinguish between pure and host-dominated AGN. For the objects with unique detection we find that they can be separated into five main groups, namely: Starburst-dominated AGN (24 % of the sample), Starburst-contaminated AGN (7 %), Type-1 AGN (21 %), Type-2 AGN (24 %), and Normal galaxy hosting AGN (24 %). We find these groups concentrated at different redshifts: Type-2 AGN and Normal galaxy hosting AGN are concentrated at low redshifts, whereas Starburst-dominated AGN and Type-1 AGN show a larger span. Correlations between hard/soft X-ray and ultraviolet, optical and infrared luminosities, respectively, are reported for the first time for such a sample of AGN spanning a wide range of redshifts. For the 20 objects with double detection the percentage of Starburst-dominated AGN increases up to 48%.Comment: 38 pages, 8 figures, 5 tables. Accepted by A
    corecore