143 research outputs found

    Optical spectra of the heavy fermion uniaxial ferromagnet UGe2_2

    Full text link
    We report a detailed study of UGe2_{2} single crystals using infrared reflectivity and spectroscopic ellipsometry. The optical conductivity suggests the presence of a low frequency interband transition and a narrow free-carrier response with strong frequency dependence of the scattering rate and effective mass. We observe sharp changes in the low frequency mass and scattering rate below the upper ferromagnetic transition TC=53KT_C = 53 K. The characteristic changes are exhibited most strongly at an energy scale of around 12 meV (100 cm−1^{-1}). They recover their unrenormalized value above TCT_C and for ω>\omega > 40 meV. In contrast no sign of an anomaly is seen at the lower transition temperature of unknown nature Tx∼T_x \sim 30 K, observed in transport and thermodynamic experiments. In the ferromagnetic state we find signatures of a strong coupling to the longitudinal magnetic excitations that have been proposed to mediate unconventional superconductivity in this compound

    Valence instability of cerium under pressure in the Kondo-like perovskite La0.1_{0.1}Ce0.4_{0.4}Sr0.5_{0.5}MnO3_3

    Full text link
    Effect of hydrostatic pressure and magnetic field on electrical resistance of the Kondo-like perovskite manganese oxide, La0.1_{0.1}Ce0.4_{0.4}Sr0.5_{0.5}MnO3_3 with a ferrimagnetic ground state, have been investigated up to 2.1 GPa and 9 T. In this compound, the Mn-moments undergo double exchange mediated ferromagnetic ordering at TCT_{\rm C} ∼\sim 280 K and there is a resistance maximum, TmaxT_{\rm max} at about 130 K which is correlated with an antiferromagnetic ordering of {\it cerium} with respect to the Mn-sublattice moments. Under pressure, the TmaxT_{\rm max} shifts to lower temperature at a rate of dTmaxT_{max}/dPP = -162 K/GPa and disappears at a critical pressure PcP_{\rm c} ∼\sim 0.9 GPa. Further, the coefficient, mm of −logT-logT term due to Kondo scattering decreases linearly with increase of pressure showing an inflection point in the vicinity of PcP_{\rm c}. These results suggest that {\it cerium} undergoes a transition from Ce3+^{3+} state to Ce4+^{4+}/Ce3+^{3+} mixed valence state under pressure. In contrast to pressure effect, the applied magnetic field shifts TmaxT_{\rm max} to higher temperature presumably due to enhanced ferromagnetic Mn moments.Comment: to be published in Phys. Rev. B (rapid commun

    High-pressure study of non-Fermi liquid and spin-glass-like behavior in CeRhSn

    Full text link
    We present measurements of the temperature dependence of electrical resistivity of CeRhSn up to ~ 27 kbar. At low temperatures, the electrical resistivity varies linearly with temperature for all pressures, indicating non-Fermi liquid behavior. Below a temperature Tf ~ 6 K, the electrical resistivity deviates from a linear dependence. We found that the low-temperature feature centered at T = Tf shows a pressure dependence dTf/dP ~ 30 mK/kbar which is typical of canonical spin glasses. This interplay between spin-glass-like and non-Fermi liquid behavior was observed in both CeRhSn and a Ce0.9La0.1RhSn alloy.Comment: 5 pages, 3 figures, accepted for publication to Journal of Physics: Condensed Matte

    Competition between hidden order and antiferromagnetism in URu_2Si_2 under uniaxial stress studied by neutron scattering

    Get PDF
    We have performed elastic neutron scattering experiments under uniaxial stress sigma applied along the tetragonal [100], [110] and [001] directions for the heavy electron compound URu2Si2. We found that antiferromagnetic (AF) order with large moment is developed with sigma along the [100] and [110] directions. If the order is assumed to be homogeneous, the staggered ordered moment mu_o continuously increases from 0.02 mu_B (sigma=0) to 0.22 mu_B (0.25 GPa). The rate of increase partial mu_o/partial sigma is ~ 1.0 mu_B/GPa, which is four times larger than that for the hydrostatic pressure (partial mu_o/partial P sim 0.25 mu_B/GPa). Above 0.25 GPa, mu_o shows a tendency to saturate, similar to the hydrostatic pressure behavior. For sigma||[001], mu_o shows only a slight increase to 0.028 mu_B (sigma = 0.46 GPa) with a rate of ~ 0.02 mu_B/GPa, indicating that the development of the AF state highly depends on the direction of sigma. We have also found a clear hysteresis loop in the isothermal mu_o(sigma) curve obtained for sigma||[110] under the zero-stress-cooled condition at 1.4 K. This strongly suggests that the sigma-induced AF phase is metastable, and separated from the "hidden order" phase by a first-order phase transition. We discuss these experimental results on the basis of crystalline strain effects and elastic energy calculations, and show that the c/a ratio plays a key role in the competition between these two phases.Comment: 9 pages, 7 figures, to appear in Physical Review

    Pressure dependence of the magnetization in the ferromagnetic superconductor UGe_2

    Full text link
    The recent discovery that superconductivity occurs in several clean itinerant ferromagnets close to low temperature magnetic instabilities naturally invites an interpretation based on a proximity to quantum criticality. Here we report measurements of the pressure dependence of the low temperature magnetisation in one of these materials, UGe_2. Our results show that both of the magnetic transitions observed in this material as a function of pressure are first order transitions and do not therefore correspond to quantum critical points. Further we find that the known pressure dependence of the superconducting transition is not reflected in the pressure dependence of the static susceptibility. This demonstrates that the spectrum of excitations giving superconductivity is not that normally associated with a proximity to quantum criticality in weak itinerant ferromagnets. In contrast our data suggest that instead the pairing spectrum might be related to a sharp spike in the electronic density of states that also drives one of the magnetic transitions.Comment: to appear in Phys. Rev. Let

    The Magnetic Phase Diagram and the Pressure and Field Dependence of the Fermi Surface in UGe2_2

    Full text link
    The ac susceptibility and de Haas-van Alphen (dHvA) effect in UGe2_2 are measured at pressures {\it P} up to 17.7 kbar for the magnetic field {\it B} parallel to the {\it a} axis, which is the easy axis of magnetization. Two anomalies are observed at {\it Bx_x}({\it P}) and {\it B}m_m({\it P}) ({\it Bx_x} >> {\it B}m_m at any {\it P}), and the {\it P}-{\it B} phase diagram is presented. The Fermi surface and quasiparticle mass are found to vary smoothly with pressure up to 17.7 kbar unless the phase boundary {\it Bx_x}({\it P}) is crossed. The observed dHvA frequencies may be grouped into three according to their pressure dependences, which are largely positive, nearly constant or negative. It is suggested that the quasiparticle mass moderately increases as the boundary {\it Bx_x}({\it P}) is approached. DHvA effect measurements are also performed across the boundary at 16.8 kbar.Comment: to be published in Phys. Rev.

    Coupled CDW and SDW Fluctuations as an Origin of Anomalous Properties of Ferromagnetic Superconductor UGe_2

    Full text link
    It is shown that anomalous properties of UGe_2 can be understood in a unified way on the basis of a single assumption that the superconductivity is mediated by the coupled SDW and CDW fluctuations induced by the imperfect nesting of the Fermi surface with majority spins at T=T_x(P) deep in the ferromagnetic phase. Excess growth of uniform magnetization is shown to develop in the temperature range T<T_x(P) as a mode-coupling effect of coupled growth of SDW and CDW orderings, which has been observed by two different types of experiments. The coupled CDW and SDW fluctuations are shown to be essentially ferromagnetic spin fluctuations which induce a spin-triplet p-wave attraction. These fluctuations consist of two modes, spin and charge fluctuations with large momentum transfer of the nesting vector. An anomalous temperature dependence of the upper critical field H_c2(T) such as crossing of H_c2(T) at P=11.4 kbar and P=13.5 kbar, can be understood by the strong-coupling-superconductivity formalism. Temperature dependence of the lattice specific heat including a large shoulder near T_x is also explained quite well as an effect of a kind of Kohn anomaly associated with coupled SDW-CDW transition.Comment: (12 pages, 10 eps figures) submitted to J. Phys. Soc. Jp

    Effects of La substitution on superconducting state of CeCoIn5

    Full text link
    We report effects of La substitution on superconducting state of heavy fermion superconductor CeCoIn5, as seen in transport and magnetization measurements. As opposed to the case of conventional superconductors, pair breaking by nonmagnetic La results in depression of Tc and indicates strong gap anisotropy. Upper critical field Hc2 values decrease with increased La concentration, but the critical field anisotropy, gamma=Hc2(a)/Hc2(c), does not change in the Ce_{1-x}La_xCoIn5 (x=0-0.15). The electronic system is in the clean limit for all values of x.Comment: Submitted to Phys. Rev.

    Theory of Ferromagnetic Superconductivity

    Full text link
    It is argued that the pairing symmetry realized in a ferromagnetic superconductor UGe2_2 must be a non-unitary triplet pairing. This particular state is free from the Pauli limitation and can survive under a huge internal molecular filed. To check our identification we examine its basic properties and several experiments are proposed. In particular, the external field is used to raise TcT_c by controlling the internal spontaneous dipole field.Comment: 4 pages, no figure
    • …
    corecore