13 research outputs found

    The reliability and validity of three non-radiological measures of thoracic kyphosis and their relations to the standing radiological Cobb angle

    Get PDF
    UnlabelledHyperkyphosis is implicated in a mounting list of negative outcomes, including higher mortality. Hyperkyphosis research is hindered due to difficulties inherent in its measurement. By showing that three clinical measures of kyphosis are suitable for use in large scale, longitudinal, hyperkyphosis studies, we will facilitate much needed research in this field.IntroductionThe objective of this study is to describe the reliability of three non-radiological kyphosis measures (Debrunner kyphosis angle, flexicurve kyphosis index, and flexicurve kyphosis angle) and their validity compared to the Cobb angle and to approximate a Cobb angle from non-radiological kyphosis measures.MethodsWe analyzed data from 113 participants aged ≄ 60 years with kyphosis angle ≄ 40°. Cobb angle was measured on a standing lateral thoracolumbar radiograph using bounds at T4 and T12. Non-radiological measures of kyphosis were made three times by a single rater and a 4th time by a blinded second rater.ResultsIntra- and inter-rater reliabilities for non-radiological assessments were high (intra-class correlations of 0.96 to 0.98) and did not differ from each other. Pearson correlations, estimating validity, ranged from 0.62 to 0.69 and did not differ. The Debrunner angle was close to the Cobb angle, with scaling factor of 1.067 and an offset of 5°. The Flexicurve kyphosis angle had to be scaled by 1.53 to obtain the equivalent Cobb angle. The scaling factor for the Flexicurve kyphosis index to Cobb angle was 315, with an offset of 5°. Compared to the measured Cobb angle, Cobb angles predicted using the non-radiological measures had similar magnitude errors (standard deviations of the differences ranging between 10.24 and 11.26).ConclusionsEach non-radiological measurement had similar reliability and validity. Low cost, ease of use, and robustness to variations in spine contour argue for the Flexicurve in longitudinal kyphosis assessments. The approximate conversion factors provided will permit translation of non-radiological measures to Cobb angles

    Complement as an Endogenous Adjuvant for Dendritic Cell-Mediated Induction of Retrovirus-Specific CTLs

    Get PDF
    Previous studies have demonstrated the involvement of complement (C) in induction of efficient CTL responses against different viral infections, but the exact role of complement in this process has not been determined. We now show that C opsonization of retroviral particles enhances the ability of dendritic cells (DCs) to induce CTL responses both in vitro and in vivo. DCs exposed to C-opsonized HIV in vitro were able to stimulate CTLs to elicit antiviral activity significantly better than non-opsonized HIV. Furthermore, experiments using the Friend virus (FV) mouse model illustrated that the enhancing role of complement on DC-mediated CTL induction also occurred in vivo. Our results indicate that complement serves as natural adjuvant for DC-induced expansion and differentiation of specific CTLs against retroviruses

    The odd-particle effect on the fission barrier

    No full text

    Recognition of beta 2-microglobulin-negative (beta 2m-) T-cell blasts by natural killer cells from normal but not from beta 2m- mice: nonresponsiveness controlled by beta 2m- bone marrow in chimeric mice.

    Get PDF
    The role of major histocompatibility complex (MHC) class I expression in control of the sensitivity of normal cells to natural killer (NK) cells was studied by the use of mutant mice made deficient for expression of beta 2-microglobulin (beta 2m) through homologous recombination in embryonal stem cells. T-cell blasts from beta 2m-deficient (beta 2m -/-) mice were killed by NK cells from normal mice in vitro, while beta 2m +/- blasts were resistant. The beta 2m defect also affected the NK effector cell repertoire: NK cells from beta 2m -/- mice failed to kill beta 2m -/- blasts, while they retained the ability to kill the prototype NK cell target lymphoma YAC-1, although at reduced levels. The inability to recognize beta 2m -/- blasts could be transferred with beta 2m -/- bone marrow to irradiated beta 2m-expressing mice. In contrast, the development of CD8+ T cells (deficient in beta 2m -/- mice) was restored in such chimera. These results indicate that loss of MHC class I/beta 2m expression is sufficient to render normal cells sensitive to NK cells, and that the same defect in the hemopoietic system of a mouse renders its NK cells tolerant to beta 2m-deficient but otherwise normal cells. In the beta 2m -/- mice, NK cells may be selected or educated by other bone marrow cells to tolerate the MHC class I deficiency. Alternatively, the specificity may be controlled directly by the class I molecules on the NK cells themselves
    corecore