8,757 research outputs found

    Progress in purebred dog health since the Bateson report of 2010

    Get PDF

    VetCompass clinical data points the way forward

    Get PDF

    Challenging conventional wisdom with vigour

    Get PDF

    Improved self-gain in deep submicrometer strained silicon-germanium pMOSFETs with HfSiOx/TiSiN gate stacks

    Get PDF
    The self-gain of surface channel compressively strained SiGe pMOSFETs with HfSiOx/TiSiN gate stacks is investigated for a range of gate lengths down to 55 nm. There is 125% and 700% enhancement in the self-gain of SiGe pMOSFETs compared with the Si control at 100 nm and 55 nm lithographic gate lengths, respectively. This improvement in the self-gain of the SiGe devices is due to 80% hole mobility enhancement compared with the Si control and improved electrostatic integrity in the SiGe devices due to less boron diffusion into the channel. At 55 nm gate length, the SiGe pMOSFETs show 50% less drain induced barrier lowering compared with the Si control devices. Electrical measurements show that the SiGe devices have larger effective channel lengths. It is shown that the enhancement in the self-gain of the SiGe devices compared with the Si control increases as the gate length is reduced thereby making SiGe pMOSFETs with HfSiOx/TiSiN gate stacks an excellent candidate for analog/mixed-signal applications

    Demography and health of Pugs under primary veterinary care in England

    Get PDF

    The cost of systemic corticosteroid-induced morbidity in severe asthma : a health economic analysis

    Get PDF
    The study data-set was supported by the Respiratory Effectiveness Group through their academic partnership with Optimum Patient Care. Ciaran O'Neill was funded under a HRB Research Leader Award (RL/13/16).Peer reviewedPublisher PD

    The impact of self-heating and SiGe strain-relaxed buffer thickness on the analog performance of strained Si nMOSFETs

    Get PDF
    The impact of the thickness of the siliconā€“germanium strain-relaxed buffer (SiGe SRB) on the analog performance of strained Si nMOSFETs is investigated. The negative drain conductance caused by self-heating at high power levels leads to negative self-gain which can cause anomalous circuit behavior like non-linear phase shifts. Using AC and DC measurements, it is shown that reducing the SRB thickness improves the analog design space and performance by minimizing self-heating. The range of terminal voltages that leverage positive self-gain in 0.1 Ī¼m strained Si MOSFETs fabricated on 425 nm SiGe SRBs is increased by over 100% compared with strained Si devices fabricated on conventional SiGe SRBs 4 Ī¼m thick. Strained Si nMOSFETs fabricated on thin SiGe SRBs also show 45% improvement in the self-gain compared with the Si control as well as 25% enhancement in the on-state performance compared with the strained Si nMOSFETs on the 4 Ī¼m SiGe SRB. The extracted thermal resistance is 50% lower in the strained Si device on the thin SiGe SRB corresponding to a 30% reduction in the temperature rise compared with the device fabricated on the 4 Ī¼m SiGe SRB. Comparisons between the maximum drain voltages for positive self-gain in the strained Si devices and the ITRS projections of supply-voltage scaling show that reducing the thickness of the SiGe SRB would be necessary for future technology nodes
    • ā€¦
    corecore