2,222 research outputs found
Health-care district management information system plan: Review of operations analysis activities during calendar year 1975 and plan for continued research and analysis activities
Operations research activities developed to identify the information required to manage both the efficiency and effectiveness of the Veterans Administration (VA) health services as these services relate to individual patient care are reported. The clinical concerns and management functions that determine this information requirement are discussed conceptually. Investigations of existing VA data for useful management information are recorded, and a diagnostic index is provided. The age-specific characteristics of diseases and lengths of stay are explored, and recommendations for future analysis activities are articulated. The effect of the introduction of new technology to health care is also discussed
On the Contractivity of Hilbert-Schmidt distance under open system dynamics
We show that the Hilbert-Schmidt distance, unlike the trace distance, between
quantum states is generally not monotonic for open quantum systems subject to
Lindblad semigroup dynamics. Sufficient conditions for contractivity of the
Hilbert-Schmidt norm in terms of the dissipation generators are given. Although
these conditions are not necessary, simulations suggest that non-contractivity
is the typical case, i.e., that systems for which the Hilbert-Schmidt distance
between quantum states is monotonically decreasing form only a small set of all
possible dissipative systems for N>2, in contrast to the case N=2 where the
Hilbert-Schmidt distance is always monotonically decreasing.Comment: Major revision. We would particularly like to thank D Perez-Garcia
for constructive feedbac
Entangling photons using a charged quantum dot in a microcavity
We present two novel schemes to generate photon polarization entanglement via
single electron spins confined in charged quantum dots inside microcavities.
One scheme is via entangled remote electron spins followed by
negatively-charged exciton emissions, and another scheme is via a single
electron spin followed by the spin state measurement. Both schemes are based on
giant circular birefringence and giant Faraday rotation induced by a single
electron spin in a microcavity. Our schemes are deterministic and can generate
an arbitrary amount of multi-photon entanglement. Following similar procedures,
a scheme for a photon-spin quantum interface is proposed.Comment: 4 pages, 4 figure
Effects of organic and ‘low input’ production methods on food quality and safety
The intensification of agricultural production in the last century has resulted in a significant loss of biodiversity, environmental problems and associated societal costs. The use of shorter rotations or monocropping and high levels of mineral fertilisers, pesticides and crop growth regulators may also have had negative impacts on food quality and safety. To reverse the negative environmental and biodiversity impacts of agricultural intensification, a range of different ‘low input’ farming systems have been developed and are now supported by EU and government support schemes. A range of recent reviews concluded that switching to low input, integrated or organic farming practices results in significant environmental benefits and increased biodiversity in agro-ecosystems. Some recent studies also reported higher levels of nutritionally desirable compounds (e.g. vitamins, antioxidants, mineral nutrients) in foods from organic and ‘low input’ production systems compared to food from conventional systems. The increasing demand and current price premiums achieved by foods from low input and especially organic production systems were shown to be closely linked to consumer perceptions about nutritional and health benefits of such foods. However, there are other studies reporting no significant differences in composition between low input and conventional foods, or inconsistent results.
There is currently a lack of (a) factorial studies, which allow the effect of individual production system components (e.g. rotation design, fertility management, crop health management, variety choice) on food composition to be assessed and (b) dietary intervention or cohort studies which compare the effect of consuming foods from different production systems on animal and/or human health. It is therefore currently not possible to draw overall conclusions about the effect of low input production on food quality and safety. This paper will (a) describe the range of organic and other ‘low input’ standards, certification and support systems currently used, (b) summarise the currently available information on effects of organic and other low input crop production systems on the environment, biodiversity and food quality, and (c) describe the methodologies and results from subproject 2 of the EU-funded Integrated project QualityLowInputFood. This project focused on improving our knowledge about the effect of organic and low input crop and livestock production systems on food quality and safety parameters
Quantum Error Correction on Linear Nearest Neighbor Qubit Arrays
A minimal depth quantum circuit implementing 5-qubit quantum error correction
in a manner optimized for a linear nearest neighbor architecture is described.
The canonical decomposition is used to construct fast and simple gates that
incorporate the necessary swap operations. Simulations of the circuit's
performance when subjected to discrete and continuous errors are presented. The
relationship between the error rate of a physical qubit and that of a logical
qubit is investigated with emphasis on determining the concatenated error
correction threshold.Comment: 4 pages, 5 figure
Optimized pulse sequences for suppressing unwanted transitions in quantum systems
We investigate the nature of the pulse sequence so that unwanted transitions
in quantum systems can be inhibited optimally. For this purpose we show that
the sequence of pulses proposed by Uhrig [Phys. Rev. Lett. \textbf{98}, 100504
(2007)] in the context of inhibition of environmental dephasing effects is
optimal. We derive exact results for inhibiting the transitions and confirm the
results numerically. We posit a very significant improvement by usage of the
Uhrig sequence over an equidistant sequence in decoupling a quantum system from
unwanted transitions. The physics of inhibition is the destructive interference
between transition amplitudes before and after each pulse.Comment: 5 figure
Tunneling Qubit Operation on a Protected Josephson Junction Array
We discuss a protected quantum computation process based on a hexagon
Josephson junction array. Qubits are encoded in the punctured array, which is
topologically protected. The degeneracy is related to the number of holes. The
topological degeneracy is lightly shifted by tuning the flux through specific
hexagons. We also show how to perform single qubit operation and basic quantum
gate operations in this system.Comment: 8 pages, 4 figures. The published version in Phys. Rev.,
A81(2010)01232
- …