75 research outputs found

    Ground state study of simple atoms within a nano-scale box

    Full text link
    Ground state energies for confined hydrogen (H) and helium (He) atoms, inside a penetrable/impenetrable compartment have been calculated using Diffusion Monte Carlo (DMC) method. Specifically, we have investigated spherical and ellipsoidal encompassing compartments of a few nanometer size. The potential is held fixed at a constant value on the surface of the compartment and beyond. The dependence of ground state energy on the geometrical characteristics of the compartment as well as the potential value on its surface has been thoroughly explored. In addition, we have investigated the cases where the nucleus location is off the geometrical centre of the compartment.Comment: 9 pages, 5 eps figures, Revte

    The effect of sublattice symmetry breaking on the electronic properties of a doped graphene

    Full text link
    Motivated by a number of recent experimental studies, we have carried out the microscopic calculation of the quasiparticle self-energy and spectral function in a doped graphene when a symmetry breaking of the sublattices is occurred. Our systematic study is based on the many-body G0_0W approach that is established on the random phase approximation and on graphene's massive Dirac equation continuum model. We report extensive calculations of both the real and imaginary parts of the quasiparticle self-energy in the presence of a gap opening. We also present results for spectral function, renormalized Fermi velocity and band gap renormalization of massive Dirac Fermions over a broad range of electron densities. We further show that the mass generating in graphene washes out the plasmaron peak in spectral weight.Comment: 22 Pages, 10 Figure

    Ground state properties of a confined simple atom by C60_{60} fullerene

    Full text link
    We numerically study the ground state properties of endohedrally confined hydrogen (H) or helium (He) atom by a molecule of C60_{60}. Our study is based on Diffusion Monte Carlo method. We calculate the effects of centered and small off-centered H- or He-atom on the ground state properties of the systems and describe the variation of ground state energies due to the C60_{60} parameters and the confined atomic nuclei positions. Finally, we calculate the electron distributions in x−zx-z plane in a wide range of C60_{60} parameters.Comment: 23 pages, 9 figures. To appear in J.Phys. B: Atom. Mol. Op

    Boron Nitride Monolayer: A Strain-Tunable Nanosensor

    Full text link
    The influence of triaxial in-plane strain on the electronic properties of a hexagonal boron-nitride sheet is investigated using density functional theory. Different from graphene, the triaxial strain localizes the molecular orbitals of the boron-nitride flake in its center depending on the direction of the applied strain. The proposed technique for localizing the molecular orbitals that are close to the Fermi level in the center of boron nitride flakes can be used to actualize engineered nanosensors, for instance, to selectively detect gas molecules. We show that the central part of the strained flake adsorbs polar molecules more strongly as compared with an unstrained sheet.Comment: 20 pages, 9 figure

    Diffuse versus square-well confining potentials in modelling AA@C60_{60} atoms

    Full text link
    Attention: this version-22 of the manuscript differs from its previously uploaded version-11 (arXiv:1112.6158v1) and subsequently published in 2012 J. Phys. B \textbf{45} 105102 only by a removed typo in Eq.(2) of version-11; there was the erroneous factor "2" in both terms in the right-hand-side of the Eq.(2) of version-11. Now that the typo is removed, Eq.(2) is correct. A perceived advantage for the replacement of a discontinuous square-well pseudo-potential, which is often used by various researchers as an approximation to the actual C60_{60} cage potential in calculations of endohedral atoms AA@C60_{60}, by a more realistic diffuse potential is explored. The photoionization of endohedral H@C60_{60} and Xe@C60_{60} is chosen as the case study. The diffuse potential is modelled by a combination of two Woods-Saxon potentials. It is demonstrated that photoionization spectra of AA@C60_{60} atoms are largely insensitive to the degree η\eta of diffuseness of the potential borders, in a reasonably broad range of η\eta's. Alternatively, these spectra are found to be insensitive to discontinuity of the square-well potential either. Both potentials result in practically identical calculated spectra. New numerical values for the set of square-well parameters, which lead to a better agreement between experimental and theoretical data for AA@C60_{60} spectra, are recommended for future studies.Comment: 11 pages, 4 figure

    Melting of Partially Fluorinated Graphene: From Detachment of Fluorine Atoms to Large Defects and Random Coils

    Get PDF
    The melting of fluorographene is very unusual and depends strongly on the degree of fluorination. For temperatures below 1000 K, fully fluorinated graphene (FFG) is thermo-mechanically more stable than graphene but at Tm≈_m\approx2800 K FFG transits to random coils which is almost twice lower than the melting temperature of graphene, i.e. 5300 K. For fluorinated graphene (PFG) up to 30 % ripples causes detachment of individual F-atoms around 2000 K while for 40-60 % fluorination, large defects are formed beyond 1500 K and beyond 60% of fluorination F-atoms remain bonded to graphene until melting. The results agree with recent experiments on the dependence of the reversibility of the fluorination process on the percentage of fluorination.Comment: 16 pages, 6 figure

    Asymmetric simple exclusion process describing conflicting traffic flows

    Full text link
    We use the asymmetric simple exclusion process for describing vehicular traffic flow at the intersection of two streets. No traffic lights control the traffic flow. The approaching cars to the intersection point yield to each other to avoid collision. This yielding dynamics is model by implementing exclusion process to the intersection point of the two streets. Closed boundary condition is applied to the streets. We utilize both mean-field approach and extensive simulations to find the model characteristics. In particular, we obtain the fundamental diagrams and show that the effect of interaction between chains can be regarded as a dynamic impurity at the intersection point.Comment: 7 pages, 10 eps figures, Revte

    Melting of Partially Fluorinated Graphene: From Detachment of Fluorine Atoms to Large Defects and Random Coils

    Get PDF
    The melting of fluorographene is very unusual and depends strongly on the degree of fluorination. For temperatures below 1000 K, fully fluorinated graphene (FFG) is thermo-mechanically more stable than graphene but at T m ≈ 2800 K FFG transits to random coils which is almost twice lower than the melting temperature of graphene, i.e. 5300 K. For fluorinated graphene (PFG) up to 30% ripples causes detachment of individual F-atoms around 2000 K while for 40-60% fluorination, large defects are formed beyond 1500 K and beyond 60% of fluorination F-atoms remain bonded to graphene until melting. The results agree with recent experiments on the dependence of the reversibility of the fluorination process on the percentage of fluorination.Fil: Singh, Sandeep Kumar. Universiteit Antwerpen. Department of Physics; BĂ©lgicaFil: Costamagna, Sebastian. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Rosario. Instituto de FĂ­sica de Rosario (i); Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, IngenierĂ­a y Agrimensura; ArgentinaFil: Neek Amal, M.. Universiteit Antwerpen. Department of Physics; BĂ©lgicaFil: Peeters, F. M.. Universiteit Antwerpen. Department of Physics; BĂ©lgic

    Strain-engineered graphene grown on hexagonal boron nitride by molecular beam epitaxy

    Get PDF
    Graphene grown by high temperature molecular beam epitaxy on hexagonal boron nitride (hBN) forms continuous domains with dimensions of order 20 ÎŒm, and exhibits moirĂ© patterns with large periodicities, up to ~30 nm, indicating that the layers are highly strained. Topological defects in the moirĂ© patterns are observed and attributed to the relaxation of graphene islands which nucleate at different sites and subsequently coalesce. In addition, cracks are formed leading to strain relaxation, highly anisotropic strain fields, and abrupt boundaries between regions with different moirĂ© periods. These cracks can also be formed by modification of the layers with a local probe resulting in the contraction and physical displacement of graphene layers. The Raman spectra of regions with a large moirĂ© period reveal split and shifted G and 2D peaks confirming the presence of strain. Our work demonstrates a new approach to the growth of epitaxial graphene and a means of generating and modifying strain in graphene
    • 

    corecore