11,311 research outputs found

    Electromagnetic Form Factors of Nucleons with QCD Constraints Sytematic Study of the Space and Time-like Regions

    Full text link
    Elastic electromagnetic form factors of nucleons are investigated both for the time-like and the space-like momentums under the condition that the QCD constraints are satisfied asymptotically. The unsubtracted dispersion relation with the superconvergence conditions are used as a realization of the QCD conditions. The experimental data are analyzed by using the dispersion formula and it is shown that the calculated form factors reproduce the experimental data reasonably well.Comment: 14 page

    Specific heat evidence for two-gap superconductivity in ternary-iron silicide Lu2_{2}Fe3_{3}Si5_{5}

    Full text link
    We report low-temperature specific heat studies on single-crystalline ternary-iron silicide superconductor Lu2_{2}Fe3_{3}Si5_{5} withTcT_c = 6.1 K down to Tc/20\sim T_c/20. We confirm a reduced normalized jump in specific heat at TcT_c, and find that the specific heat divided by temperature C/TC/T shows sudden drop at Tc/5\sim T_c/5 and goes to zero with further decreasing temperature. These results indicate the presence of two distinct superconducting gaps in Lu2_{2}Fe3_{3}Si5_{5}, similar to a typical two-gap superconductor MgB2_{2}. We also report Hall coefficients, band structure calculation, and the anisotropy of upper critical fields for Lu2_{2}Fe3_{3}Si5_{5}, which support the anisotropic multiband nature and reinforce the existence of two superconducting gaps in Lu2_{2}Fe3_{3}Si5_{5}.Comment: 5 pages, 5 figure

    Collective motions in globally coupled tent maps with stochastic updating

    Full text link
    We study a generalization of globally coupled maps, where the elements are updated with probability pp. When pp is below a threshold pcp_c, the collective motion vanishes and the system is the stationary state in the large size limit. We present the linear stability analysis.Comment: 6 pages including 5 figure

    Women As Drivers Of Japanese Firms Success: The Effect Of Women Managers And Gender Diversity On Firm Performance

    Get PDF
    While various theoretical arguments have been constructed that imply that a firm would see improved financial performance by increasing the proportion of women managers, previous studies on the issue, in Japan and elsewhere, have shown mixed results. Using data from Toyo Keizai and Nikkei NEEDS on 745 Japanese-listed companies, the authors investigate the impact of womens managerial participation and, more generally, overall workplace and managerial gender diversity on corporate performance. They find a robust significant positive relationship between firm performance and both female manager ratio and gender diversity, after controlling for industry, firm size, capital structure, corporate governance, and compensation policy. This relationship also exhibits substantial nonlinearity, with the benefit decreasing as the proportion of women managers or managerial gender diversity increases

    Dust Size Growth and Settling in a Protoplanetary Disk

    Full text link
    We have studied dust evolution in a quiescent or turbulent protoplanetary disk by numerically solving coagulation equation for settling dust particles, using the minimum mass solar nebular model. As a result, if we assume an ideally quiescent disk, the dust particles settle toward the disk midplane to form a gravitationally unstable layer within 2x10^3 - 4x10^4 yr at 1 - 30 AU, which is in good agreement with an analytic calculation by Nakagawa, Sekiya, & Hayashi (1986) although they did not take into account the particle size distribution explicitly. In an opposite extreme case of a globally turbulent disk, on the other hand, the dust particles fluctuate owing to turbulent motion of the gas and most particles become large enough to move inward very rapidly within 70 - 3x10^4 yr at 1 - 30 AU, depending on the strength of turbulence. Our result suggests that global turbulent motion should cease for the planetesimal formation in protoplanetary disks.Comment: 27 pages, 8 figures, accepted for publication in the Ap

    Mutations in shaking-B prevent electrical synapse formation in the Drosophila giant fiber system

    Get PDF
    The giant fiber system (GFS) is a simple network of neurons that mediates visually elicited escape behavior in Drosophila. The giant fiber (GF), the major component of the system, is a large, descending interneuron that relays visual stimuli to the motoneurons that innervate the tergotrochanteral jump muscle (TTM) and dorsal longitudinal flight muscles (DLMs). Mutations in the neural transcript from the shaking-B locus abolish the behavioral response by disrupting transmission at some electrical synapses in the GFS. This study focuses on the role of the gene in the development of the synaptic connections. Using an enhancer-trap line that expresses lacZ in the GFs, we show that the neurons develop during the first 30 hr of metamorphosis. Within the next 15 hr, they begin to form electrical synapses, as indicated by the transfer of intracellularly injected Lucifer yellow. The GFs dye-couple to the TTM motoneuron between 30 and 45 hr of metamorphosis, to the peripherally synapsing interneuron that drives the DLM motoneurons at approximately 48 hr, and to giant commissural interneurons in the brain at approximately 55 hr. Immunocytochemistry with shaking-B peptide antisera demonstrates that the expression of shaking-B protein in the region of GFS synapses coincides temporally with the onset of synaptogenesis; expression persists thereafter. The mutation shak-B2, which eliminates protein expression, prevents the establishment of dye coupling shaking-B, therefore, is essential for the assembly and/or maintenance of functional gap junctions at electrical synapses in the GFS

    Generation of a poor prognostic chronic lymphocytic leukemia-like disease model: PKC subversion induces up-regulation of PKC II expression in B lymphocytes

    Get PDF
    Overwhelming evidence identifies the microenvironment as a critical factor in the development and progression of chronic lymphocytic leukemia, underlining the importance of developing suitable translational models to study the pathogenesis of the disease. We previously established that stable expression of kinase dead protein kinase C alpha in hematopoietic progenitor cells resulted in the development of a chronic lymphocytic leukemia-like disease in mice. Here we demonstrate that this chronic lymphocytic leukemia model resembles the more aggressive subset of chronic lymphocytic leukemia, expressing predominantly unmutated immunoglobulin heavy chain genes, with upregulated tyrosine kinase ZAP-70 expression and elevated ERK-MAPK-mTor signaling, resulting in enhanced proliferation and increased tumor load in lymphoid organs. Reduced function of PKCα leads to an up-regulation of PKCβII expression, which is also associated with a poor prognostic subset of human chronic lymphocytic leukemia samples. Treatment of chronic lymphocytic leukemia-like cells with the selective PKCβ inhibitor enzastaurin caused cell cycle arrest and apoptosis both in vitro and in vivo, and a reduction in the leukemic burden in vivo. These results demonstrate the importance of PKCβII in chronic lymphocytic leukemia-like disease progression and suggest a role for PKCα subversion in creating permissive conditions for leukemogenesis

    Red giant bound on the axion-electron coupling reexamined

    Full text link
    If axions or other low-mass pseudoscalars couple to electrons (``fine structure constant'' αa\alpha_a) they are emitted from red giant stars by the Compton process γ+ee+a\gamma+e\to e+a and by bremsstrahlung e+(Z,A)(Z,A)+e+ae+(Z,A)\to (Z,A)+e+a. We construct a simple analytic expression for the energy-loss rate for all conditions relevant for a red giant and include axion losses in evolutionary calculations from the main sequence to the helium flash. We find that \alpha_a\lapprox0.5\mn(-26) or m_a\lapprox 9\,\meV/\cos^2\beta lest the red giant core at helium ignition exceed its standard mass by more than 0.025\,\MM_\odot, in conflict with observational evidence. Our bound is the most restrictive limit on αa\alpha_a, but it does not exclude the possibility that axion emission contributes significantly to the cooling of ZZ~Ceti stars such as G117--B15A for which the period decrease was recently measured.Comment: 11 pages, uuencoded and compressed postscript fil

    Axions and the pulsation periods of variable white dwarfs revisited

    Get PDF
    Axions are the natural consequence of the introduction of the Peccei-Quinn symmetry to solve the strong CP problem. All the efforts to detect such elusive particles have failed up to now. Nevertheless, it has been recently shown that the luminosity function of white dwarfs is best fitted if axions with a mass of a few meV are included in the evolutionary calculations. Our aim is to show that variable white dwarfs can provide additional and independent evidence about the existence of axions. The evolution of a white dwarf is a slow cooling process that translates into a secular increase of the pulsation periods of some variable white dwarfs, the so-called DAV and DBV types. Since axions can freely escape from such stars, their existence would increase the cooling rate and, consequently, the rate of change of the periods as compared with the standard ones. The present values of the rate of change of the pulsation period of G117-B15A are compatible with the existence of axions with the masses suggested by the luminosity function of white dwarfs, in contrast with previous estimations. Furthermore, it is shown that if such axions indeed exist, the drift of the periods of pulsation of DBV stars would be noticeably perturbed.Comment: Accepted for publication in Astronomy & Astrophysic
    corecore