140 research outputs found

    Dynamics of quasi-one-dimensional bright and vortex solitons of a dipolar Bose-Einstein condensate with repulsive atomic interaction

    Full text link
    By numerical and variational analysis of the three-dimensional Gross-Pitaevskii equation we study the formation and dynamics of bright and vortex-bright solitons in a cigar-shaped dipolar Bose-Einstein condensate for large repulsive atomic interactions. Phase diagram showing the region of stability of the solitons is obtained. We also study the dynamics of breathing oscillation of the solitons as well as the collision dynamics of two solitons at large velocities. Two solitons placed side-by-side at rest coalesce to form a stable bound soliton molecule due to dipolar attraction.Comment: To obtain the included video clips S1, S2, S3 and S4, please download sourc

    Matter wave switching in Bose-Einstein condensates via intensity redistribution soliton interactions

    Get PDF
    Using time dependent nonlinear (s-wave scattering length) coupling between the components of a weakly interacting two component Bose-Einstein condensate (BEC), we show the possibility of matter wave switching (fraction of atoms transfer) between the components via shape changing/intensity redistribution (matter redistribution) soliton interactions. We investigate the exact bright-bright N-soliton solution of an effective one-dimensional (1D) two component BEC by suitably tailoring the trap potential, atomic scattering length and atom gain or loss. In particular, we show that the effective 1D coupled Gross-Pitaevskii (GP) equations with time dependent parameters can be transformed into the well known completely integrable Manakov model described by coupled nonlinear Schr\"odinger (CNLS) equations by effecting a change of variables of the coordinates and the wave functions under certain conditions related to the time dependent parameters. We obtain the one-soliton solution and demonstrate the shape changing/matter redistribution interactions of two and three soliton solutions for the time independent expulsive harmonic trap potential, periodically modulated harmonic trap potential and kink-like modulated harmonic trap potential. The standard elastic collision of solitons occur only for a specific choice of soliton parameters.Comment: 11 pages, 14 figures, 1 tabl

    Comment on ``Intermittent Synchronization in a Pair of Coupled Chaotic Pendula"

    Get PDF
    The main aim of this comment is to emphasize that the conditional Lyapunov exponents play an important role in distinguishing between intermittent and persistent synchronization, when the analytic criteria for asymptotic stability are not uniformly obeyed.Comment: 2 pages, RevTeX 4, 1 EPS figur

    Physicochemical evaluation of common purslane (Portulaca oleracea L.) accessions through correlation and regression

    Get PDF
    It is important to look at the physicochemical qualities of Portulaca, a weed species used as a vegetable and a herb for medical and therapeutic purposes. India has a wide range of variations in this species' morphology and nutraceutical value. This study aimed to evaluate the physicochemical properties of various purslane accessions from different regions of Tamil Nadu. A total of 15 purslane accessions (PA 1, PA 2, PA 3, PA 4, PA 5, PA 6, PA 7, PA 8, PA 9, PA 10, PA 11, PA 12, PA 13, PA 14 and PA 15) were collected and evaluated. Physical traits like colour of the leaves and stems were quantified as hue angle and chroma value, which showed a degree of variation. Estimates suggested that phytochemical properties related the hue and chroma of leaf and stem to the pigments in plants. Among the accessions, PA 3 has recorded the highest phytochemical properties viz., leaf total chlorophyll content 1.43±0.16 mg g-1, leaf total carotenoid content 0.24±0.03 mg g-1, stem total chlorophyll content 0.49±0.05 mg g-1, stem total carotenoid content 0.12±0.01 mg g-1 and total anthocyanin content 19.25±1.54 µg g-1. The multiple regression model suggested that the values can predict the estimated values. The evaluation of physicochemical properties along with the regression model helps in the breeding programme to select the traits; phytochemical analysis proved the ample supply of chlorophylls, carotenoids and anthocyanins, so these wild species could be a cheap source to alleviate several diseases.     

    PRABHA - A New Heuristic Approach For Machine Cell Formation Under Dynamic Production Environments

    Get PDF
    Over the past three decades, Cellular Manufacturing Systems (CMS) have attracted a lot of attention from manufacturers because of its positive impacts on analysis of batch-type production and also a wide range of potential application areas. Machine cell formation and part family creation are two important tasks of cellular manufacturing systems. Most of the current CMS design methods have been developed for a static production environment. This paper addresses the problem of machine cell formation and part family formation for a dynamic production requirement with the objective of minimizing the material handling cost, penalty for cell load variation and the machine relocation cost. The parameters considered include demand of parts in different period, routing sequences, processing time and machine capacities. In this work a new heuristic approach named PRABHA is proposed for machine cell formation and the part family formation. The computational results of the proposed heuristics approach were obtained and compared with the Genetic Algorithm approach and it was found that the proposed heuristics PRABHA outperforms the Genetic Algorithm

    In vitro evaluation of antimicrobial properties of a new Mannich base N-[(Diphenylamino)methyl]acrylamide and its Oxovanadium(IV), Cerium(IV), Thorium(IV) and Dioxouranium(VI) metal chelates against human pathogenic microorganisms

    Get PDF
    N-[(Diphenylamino)methyl]acrylamide(DPAMAcry) was synthesized using Mannich reaction and its complexes of oxovanadium(IV), cerium(IV), thorium(IV) and dioxouranium(VI) were prepared and characterized by elemental analysis, UV, IR and EPR spectral studies. All the newly synthesized compounds have been screened for their antibacterial and antifungal activities. All of them show promising antibacterial and antifungal activity

    Scaling and synchronization in a ring of diffusively coupled nonlinear oscillators

    Get PDF
    Chaos synchronization in a ring of diffusively coupled nonlinear oscillators driven by an external identical oscillator is studied. Based on numerical simulations we show that by introducing additional couplings at (mNc+1)(mN_c+1)-th oscillators in the ring, where mm is an integer and NcN_c is the maximum number of synchronized oscillators in the ring with a single coupling, the maximum number of oscillators that can be synchronized can be increased considerably beyond the limit restricted by size instability. We also demonstrate that there exists an exponential relation between the number of oscillators that can support stable synchronization in the ring with the external drive and the critical coupling strength ϵc\epsilon_c with a scaling exponent γ\gamma. The critical coupling strength is calculated by numerically estimating the synchronization error and is also confirmed from the conditional Lyapunov exponents (CLEs) of the coupled systems. We find that the same scaling relation exists for mm couplings between the drive and the ring. Further, we have examined the robustness of the synchronous states against Gaussian white noise and found that the synchronization error exhibits a power-law decay as a function of the noise intensity indicating the existence of both noise-enhanced and noise-induced synchronizations depending on the value of the coupling strength ϵ\epsilon. In addition, we have found that ϵc\epsilon_c shows an exponential decay as a function of the number of additional couplings. These results are demonstrated using the paradigmatic models of R\"ossler and Lorenz oscillators.Comment: Accepted for Publication in Physical Review

    Self-trapping of a binary Bose-Einstein condensate induced by interspecies interaction

    Full text link
    The problem of self-trapping of a Bose-Einstein condensate (BEC) and a binary BEC in an optical lattice (OL) and double well (DW) is studied using the mean-field Gross-Pitaevskii equation. For both DW and OL, permanent self-trapping occurs in a window of the repulsive nonlinearity gg of the GP equation: gc1<g<gc2g_{c1}<g<g_{c2}. In case of OL, the critical nonlinearities gc1g_{c1} and gc2g_{c2} correspond to a window of chemical potentials μc1<μ<μc2\mu_{c1}<\mu<\mu_{c2} defining the band gap(s) of the periodic OL. The permanent self-trapped BEC in an OL usually represents a breathing oscillation of a stable stationary gap soliton. The permanent self-trapped BEC in a DW, on the other hand, is a dynamically stabilized state without any stationary counterpart. For a binary BEC with intraspecies nonlinearities outside this window of nonlinearity, a permanent self trapping can be induced by tuning the interspecies interaction such that the effective nonlinearities of the components fall in the above window

    Studies on Droplet Size Distribution of Oil-in-Water Emulsion in SMX Static Mixer

    Get PDF
    Oil droplet size distribution of an emulsion produced by Sulzer Chemtech's static SMX static mixer under flow condition was experimentally studied and reported. The dispersed phase of vegetable oil-in-water (O/W) emulsion produced through static mixer by varying the concentration from 1 to 4 vol % oil in water, flowrate of dispersed and continuous phase and operating time. The effect of run time on oil drop sizes is characterized using the spectra obtained from the particle size analyser. The static mixer with 9 perpendicular elements made of teflon is stacked against each other had a void fraction of 0.93. The sauter mean diameter of oil droplet decreases from 8 µm to 4 µm with an increase in Reynolds number. The emulsion droplets of mean sauter diameter in the range 4.1 µm to 4.7 µm were produced by increasing the concentration of the dispersed phase from 1:100 to 1:25, within a span value of between 30 to 240 sec, at atmospheric pressure and room temperature. Performance equation for sauter mean oil droplet diameter is developed based on the experimental data has ±0.2 rms deviation

    Dynamics of fluctuations in an optical analog of the Laval nozzle

    Full text link
    Using the analogy between the description of coherent light propagation in a medium with Kerr nonlinearity by means of nonlinear Schr\"odinger equation and that of a dissipationless liquid we propose an optical analogue of the Laval nozzle. The optical Laval nozzle will allow one to form a transonic flow in which one can observe and study a very unusual dynamics of classical and quantum fluctuations including analogue of the Hawking radiation of real black holes. Theoretical analysis of this dynamics is supported by numerical calculations and estimates for a possible experimental setup are presented.Comment: 7 pages, 4 figure
    • …
    corecore