42 research outputs found

    Mechanisms of the influence of UV irradiation on collagen and collagen-ascorbic acid solutions

    Get PDF
    The study of the influence of UV irradiation on collagen solutions has shown the destabilization of the collagen molecule by calorimetric method. It is reflected both in changes of thermodynamic parameters of transition (Tm, ΔH, Cp=f(t)) and in the appearance of a low temperature peak, that is practically irreversible against rescanning. All these indicate that the important defects in the molecule occur. The ESR measurements have shown that the above-mentioned thermal changes are connected with the occurrence of free radicals in solution under UV irradiation. They interact with proline (Pro) residues of the protein with the appearance of secondary free radicals, with following migration to glycine (Gly) residues. The emergence of the free radicals at the Pro and then at the Gly residues may cause the dramatic structural defect resulting from the UV irradiation, which significantly alters the network of hydrogen bonds in the triple helix of the collagen molecule. All this is connected with destabilization of the collagen molecule, because the defects in amino acid residues probably lead to cleavage of covalent bonds near the damaged sites maintaining the triple helical structure. The presence of ascorbic acid in collagen solution protects the collagen molecule from occurring of secondary free radicals

    Mechanisms of the Influence of UV Irradiation on Collagen and Collagen-Ascorbic Acid Solutions

    Get PDF
    The study of the influence of UV irradiation on collagen solutions has shown the destabilization of the collagen molecule by calorimetric method. It is reflected both in changes of thermodynamic parameters of transition (Tm, ΔH, Cp = f (T)) and in the appearance of a low temperature peak, that is practically irreversible against rescanning. All these indicate that the important defects in the molecule occur. The ESR measurements have shown that the above-mentioned thermal changes are connected with the occurrence of free radicals in solution under UV irradiation. They interact with proline (Pro) residues of the protein with the appearance of secondary free radicals, with following migration to glycine (Gly) residues. The emergence of the free radicals at the Pro and then at the Gly residues may cause the dramatic structural defect resulting from the UV irradiation, which significantly alters the network of hydrogen bonds in the triple helix of the collagen molecule. All this is connected with destabilization of the collagen molecule, because the defects in amino acid residues probably lead to cleavage of covalent bonds near the damaged sites maintaining the triple helical structure. The presence of ascorbic acid in collagen solution protects the collagen molecule from occurring of secondary free radicals

    Low-Temperature Polymorphic Phase Transition in a Crystalline Tripeptide L-Ala-L-Pro-Gly·H2O Revealed by Adiabatic Calorimetry

    Get PDF
    We demonstrate application of precise adiabatic vacuum calorimetry to observation of phase transition in the tripeptide l-alanyl-l-prolyl-glycine monohydrate (APG) from 6 to 320 K and report the standard thermodynamic properties of the tripeptide in the entire range. Thus, the heat capacity of APG was measured by adiabatic vacuum calorimetry in the above temperature range. The tripeptide exhibits a reversible first-order solid-to-solid phase transition characterized by strong thermal hysteresis. We report the standard thermodynamic characteristics of this transition and show that differential scanning calorimetry can reliably characterize the observed phase transition with <5 mg of the sample. Additionally, the standard entropy of formation from the elemental substances and the standard entropy of hypothetical reaction of synthesis from the amino acids at 298.15 K were calculated for the studied tripeptide.National Institute of Biomedical Imaging and Bioengineering (U.S.) (EB-003151)National Institute of Biomedical Imaging and Bioengineering (U.S.) (EB-001960)National Institute of Biomedical Imaging and Bioengineering (U.S.) (EB-002026

    Hydration of ds-DNA and ss-DNA by Neutron Quasielastic Scattering

    Get PDF
    Quasielastic neutron scattering measurements were performed in hydrated samples of ds-DNA and ss-DNA. The samples were hydrated in a high relative humidity atmosphere, and their final water content was 0.559 g H(2)O/g ds-DNA and 0.434 g H(2)O/g ss-DNA. The measurements were performed at 8 and 5.2 Å for the ds-DNA sample, and at 5.2 Å for the ss-DNA sample. The temperature was in both cases 298 K. Analysis of the obtained data indicates that in the ds-DNA sample we can distinguish two types of protons—those belonging to water molecules strongly attached to the ds-DNA surface and another fraction belonging to water that diffuses isotropically in a sphere of radius 2.8 Å, with a local diffusion coefficient of 2.2 × 10(−5) cm(2) s(−1). For ss-DNA, on the other hand, no indication was found of motionally restricted or confined water. Further, the fraction of protons strongly attached to the ds-DNA surface corresponds to 0.16 g H(2)O/g ds-DNA, which equals the amount of water that is released by ds-DNA upon thermal denaturation, as studied by one of us (G.M.) by differential scanning calorimetry. This value also equals the difference between the critical hydration values of ds-DNA and ss-DNA, also determined by DSC. These results represent, thus, a completely independent measurement of water characteristics and behavior in ds- and ss-DNA at critical hydration values, and therefore substantiate the previous suggestions/conclusions of the results obtained by calorimetry

    Specific heat spectra for quasiperiodic ladder sequences

    No full text
    We performed a theoretical study of the specific heat C(T) as a function of the temperature for double-strand quasiperiodic sequences. To mimic DNA molecules, the sequences are made up from the nucleotides guanine G, adenine A, cytosine C and thymine T, arranged according to the Fibonacci and Rudin-Shapiro quasiperiodic sequences. The energy spectra are calculated using the two-dimensional Schrödinger equation, in a tight-binding approximation, with the on-site energy exhibiting long-range disorder and non-random hopping amplitudes. We compare the specific heat features of these quasiperiodic artificial sequences to the spectra considering a segment of the first sequenced human chromosome 22 (Ch22), a real genomic DNA sequence. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 200682.60.Qr Thermodynamics of nanoparticles, 87.14.Gg DNA, RNA, 87.15.Aa Theory and modeling; computer simulation, 89.75.Da Systems obeying scaling laws,
    corecore