23 research outputs found

    Association of the human astrocyte elevated gene-1 promoter variants with susceptibility to hepatocellular carcinoma

    No full text
    Central role of astrocyte elevated gene-1 (AEG-1) in regulating diverse aspects of hepatocellular carcinoma (HCC) pathogenesis and association of its overexpression with HCC progression has been demonstrated. The positive regulatory regions of AEG-1 promoter contain several putative transcription factor binding sites critical for basal promoter activity. In this study, the aim was to explore the association of AEG-1 promoter variant with HCC. In this study, the human AEG-1 promoter including the region -538 to -42 was explored in 53 HCC patients and 108 healthy controls. The polymerase chain reaction-sequencing method was used for investigating AEG-1 promoter polymorphisms. A novel mutation in AEG-1 promoter in human HCC patients at a potential AP-2 binding site was explored. An A>C mutation was observed in -483 of AEG-1 promoter in 4 out of 53 HCC patients but not in 108 control individuals. Sequencing data showed genetic variations in 11 HCC patients and 3 healthy controls. Among them, one novel SNP was found in activator protein-1 (AP2), a transcription factor binding site (-483 A to C) that may be associated with the susceptibility to HCC (P = 0.012) but no associations were found for other observed variations. This mutation could be tumor-specific. AEG-1 promoter variant -483 A>C may be associated with the susceptibility to HCC in Iranian population. To our knowledge, this is the first study that has reported this association with the susceptibility to HCC. Therefore, further studies need to be conducted in larger sample sizes and other populations to validate these findings. © 2014 Springer Science+Business Media New York

    Designer nanocarriers for navigating the systemic delivery of oncolytic viruses

    Get PDF
    Nanotechnology is paving the way for new carrier systems designed to overcome the greatest challenges of oncolytic virotherapy; systemic administration and subsequent implications of immune responses and specific cell binding and entry. Systemic administration of oncolytic agents is vital for disseminated neoplasms, however transition of nanoparticles (NP) to virotherapy has yielded modest results. Their success relies on how they navigate the merry-go-round of often-contradictory phases of NP delivery: circulatory longevity, tissue permeation and cellular interaction, with many studies postulating design features optimal for each phase. This review discusses the optimal design of NPs for the transport of oncolytic viruses within these phases, to determine whether improved virotherapeutic efficacy lies in the pharmacokinetic/pharmacodynamics characteristics of the NP–oncolytic viruses complexes rather than manipulation of the virus and targeting ligands

    Augmentation of Recipient Adaptive Alloimmunity by Donor Passenger Lymphocytes within the Transplant.

    Get PDF
    Chronic rejection of solid organ allografts remains the major cause of transplant failure. Donor-derived tissue-resident lymphocytes are transferred to the recipient during transplantation, but their impact on alloimmunity is unknown. Using mouse cardiac transplant models, we show that graft-versus-host recognition by passenger donor CD4 T cells markedly augments recipient cellular and humoral alloimmunity, resulting in more severe allograft vasculopathy and early graft failure. This augmentation is enhanced when donors were pre-sensitized to the recipient, is dependent upon avoidance of host NK cell recognition, and is partly due to provision of cognate help for allo-specific B cells from donor CD4 T cells recognizing B cell MHC class II in a peptide-degenerate manner. Passenger donor lymphocytes may therefore influence recipient alloimmune responses and represent a therapeutic target in solid organ transplantation.This work was supported by a British Heart Foundation project grant, the National Institute of Health Research Cambridge Biomedical Research Centre and the National Institute of Health Research Blood and Transplant Research Unit. IGH and JMA were supported by a Wellcome Trust Clinical Research Training Fellowship and Raymond and Beverly Sackler Scholarship. KSP was supported by an Academy of Medical Sciences / Wellcome Trust starter grant.This is the final version of the article. It first appeared from Elsevier via https://doi.org/10.1016/j.celrep.2016.04.00

    Evaluation of frequency magnetic field, static field, and Temozolomide on viability, free radical production and gene expression (p53) in the human glioblastoma cell line (A172)

    No full text
    Thirteen million cancer deaths and 21.7 million new cancer cases are expected in the world by 2030. Glioblastoma is the most common primary malignant tumor of the central nervous system which is the most lethal type of primary brain tumor in adults with the survival time of 12�15 months after the initial diagnosis. Glioblastoma is the most common and most malignant type of brain tumor, and despite surgery, chemotherapy and radiation treatment, the average survival of patients is about 14 months. The current research showed that the frequency magnetic field (FMF) and static magnetic field (SMF) can influence cancer cell proliferation and coupled with anticancer drugs may provide a new strategy for cancer therapy. At the present study, we investigated the effects of FMF (10 Hz, 50 G), SMF (50 G) and Temozolomide (200 μm) on viability, free radical production, and p53 followed by p53 protein expression in the human glioblastoma cell line (A172) by MTT, NBT, RT-PCR and Western blot. Results showed that the effect of Temozolomide (TMZ) with SMF and FMF together increased the cytotoxicity, free radical production, and p53 followed by p53 protein expression in the human glioblastoma cell line (A172). © 2020, © 2020 Taylor & Francis Group, LLC

    Epidermal growth factor receptor gene expression evaluation in colorectal cancer patients

    No full text
    Background: Colorectal cancer is one of the most common causes of death in the world and third and fourth most common cancer among men and women in Iran respectively. Epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor that shows over expression in epithelial tumors and regulates important processes in tumorigenesis. Incidence and characteristics of colorectal cancer are based on the geographic region and race. Aim: In this research work, the over expression of EGFR in formalin fixed paraffin-embedded (FFPE) colorectal cancer tumor tissue of patients was studied. Materials and Methods: Fifteen FFPE colorectal cancer tumor tissues (10 women and 5 men; 25-65 years old and stage IV) and 15 non-patients (nine women and six men; 25-65 years old) that were collected during 2006-2012. EGFR gene expression level was analyzed by real-time quantitative reverse transcriptase polymerase chain reaction (PCR). All PCR reactions were performed in triplicate for both target gene and internal control (18s ribosomal ribonucleic acid) with the 2-��CT method. Gene expression differences in patients and controls were evaluated with t-test. Results: The results were showed EGFR gene over expression in 12 (80) of 15 patients. There was a statistically significant difference in the prevalence of EGFR expression between patients and control (P < 0.05). Conclusion: Our results demonstrated EGFR gene over expression in colorectal cancer tumor tissue compared with controls
    corecore