308 research outputs found
Inelastic X-ray scattering from valence electrons near absorption edges of FeTe and TiSe
We study resonant inelastic x-ray scattering (RIXS) peaks corresponding to
low energy particle-hole excited states of metallic FeTe and semi-metallic
TiSe for photon incident energy tuned near the absorption edge of
Fe and Ti respectively. We show that the cross section amplitudes are well
described within a renormalization group theory where the effect of the core
electrons is captured by effective dielectric functions expressed in terms of
the the atomic scattering parameters of Fe and Ti. This method can be
used to extract the dynamical structure factor from experimental RIXS spectra
in metallic systems.Comment: 6 pages, 4 figure
Elementary structural building blocks encountered in silicon surface reconstructions
Driven by the reduction of dangling bonds and the minimization of surface
stress, reconstruction of silicon surfaces leads to a striking diversity of
outcomes. Despite this variety even very elaborate structures are generally
comprised of a small number of structural building blocks. We here identify
important elementary building blocks and discuss their integration into the
structural models as well as their impact on the electronic structure of the
surface
STM microscopy of the CDW in 1T-TiSe2 in the presence of single atom defects
We present a detailed low temperature scanning tunneling microscopy study of
the commensurate charge density wave (CDW) in 1-TiSe in the presence of
single atom defects. We find no significant modification of the CDW lattice in
single crystals with native defects concentrations where some bulk probes
already measure substantial reductions in the CDW phase transition signature.
Systematic analysis of STM micrographs combined with density functional theory
modelling of atomic defect patterns indicate that the observed CDW modulation
lies in the Se surface layer. The defect patterns clearly show there are no
2-polytype inclusions in the CDW phase, as previously found at room
temperature [Titov A.N. et al, Phys. Sol. State 53, 1073 (2011). They further
provide an alternative explanation for the chiral Friedel oscillations recently
reported in this compound [J. Ishioka et al., Phys. Rev. B 84, 245125, (2011)].Comment: 5 pages, 4 figure
Doping nature of native defects in 1T-TiSe2
The transition metal dichalcogenide 1T-TiSe2 is a quasi two-dimensional
layered material with a charge density wave (CDW) transition temperature of
TCDW 200 K. Self-doping effects for crystals grown at different temperatures
introduce structural defects, modify the temperature dependent resistivity and
strongly perturbate the CDW phase. Here we study the structural and doping
nature of such native defects combining scanning tunneling
microscopy/spectroscopy and ab initio calculations. The dominant native single
atom dopants we identify in our single crystals are intercalated Ti atoms, Se
vacancies and Se substitutions by residual iodine and oxygen.Comment: 5 pages, 3 figure
Spontaneous exciton condensation in 1T-TiSe2: a BCS-like approach
Recently strong evidence has been found in favor of a BCS-like condensation
of excitons in 1\textit{T}-TiSe. Theoretical photoemission intensity maps
have been generated by the spectral function calculated within the excitonic
condensate phase model and set against experimental angle-resolved
photoemission spectroscopy data. Here, the calculations in the framework of
this model are presented in detail. They represent an extension of the original
excitonic insulator phase model of J\'erome \textit{et al.} [Phys. Rev. {\bf
158}, 462 (1967)] to three dimensional and anisotropic band dispersions. A
detailed analysis of its properties and further comparison with experiment are
also discussedComment: Submitted to PRB, 11 pages, 7 figure
Alternative Seasonal Factor Estimation Methods and Their Accuracy in Predicting Annual Average Daily Traffic
The annual average daily traffic (AADT) is a key transportation performance measure used in guiding the allocation of federal funds to US states. It is estimated from daily traffic volume counts recorded over a year. Given its importance, the Federal Highway Administration (FHWA) requires each state to estimate AADT for various sections of their road network. Each state department of transportation (DOT) therefore has a traffic monitoring program for collecting traffic data. It comprises: a permanent traffic count (PTC) program, and a short period traffic count (SPTC) program. PTC volume data are used to estimate AADT, and seasonal factors (SFs). SFs are used to adjust SPTC into AADT estimates. Most states develop SFs using the most recent year’s PTC data only. However, a few use multiple years’ PTC data. Tennessee Department of Transportation (TDOT) is in the latter category. TDOT’s method implicitly assumes equal reliability of SFs over a five-year period. The objectives of this research were: First, to develop a new procedure for combining SFs from multi-year data by relaxing the assumption underlying TDOT’s method; second, to investigate which SF development method yields more accurate AADT estimates. Data from TDOT and Maryland Department of Transportation were analyzed. The new procedure developed in this research for combining multi-year SFs predicts AADT most accurately. It is followed by TDOT’s method
- …