34 research outputs found

    Pyrolysed almond shells used as electrodes in microbial electrolysis cell

    Get PDF
    9 p.The large cost of components used in microbial electrolysis cell (MEC) reactors represents an important limitation that is delaying the commercial implementation of this technology. In this work, we explore the feasibility of using pyrolysed almond shells (PAS) as a material for producing low-cost anodes for use in MEC systems. This was done by comparing the microbial populations that developed on the surface of PAS bioanodes with those present on the carbon felt (CF) bioanodes traditionally used in MECs. Raw almond shells were pyrolysed at three different temperatures, obtaining the best conductive material at the highest temperature (1000 °C). The behaviour of this material was then verified using a single-chamber cell. Subsequently, the main test was carried out using two-chamber cells and the microbial populations extant on each of the bioanodes were analysed. High-throughput sequencing of the 16S rRNA gene for eubacterial populations was carried out in order to compare the microbial communities attached to each type of electrode. The microbial populations on each electrode were also quantified by real-time polymerase chain reaction (realtime PCR) to determine the amount of bacteria capable of growing on the electrodes’surface. The results indicated that the newly developed PAS bioanodes possess a biofilm similar to those found on the surface of traditional CF electrodes. This research was possible thanks to the financial support of the Junta de Castilla y León, and was financed by European Regional Development Funds (LE320P18). C. B. thanks the Spanish Ministerio de Educación, Cultura y Deporte for support in the form of an FPI fellowship grant (Ref #: BES-2016-078329)

    Biological anodic oxidation and cathodic reduction reactions for improved bioelectrochemical treatment of petroleum refinery wastewater

    No full text
    Bioelectrochemical systems (BESs) were evaluated for the bioelectrochemical treatment (BET) of petroleum refinery wastewater (PRW) by applying mild electrochemical potential in the range of 400?1000 mV on a single chamber membrane-less BES configured with anodic and cathodic biofilms. After four days of cycle operation in batch mode, BES achieved a maximum current density of 278 mA/m2 and a power density of 222 mW/m2 using applied potential of 800 mV. This system also achieved COD degradation rate of 0.364 kg COD/m3-day. Diesel range organics (DROs) exhibited more than 90% degradation, which is 15 times higher than the abiotic control. Electrochemically active bioanode and biocathode contributed to the degradation of PRW through both oxidation and reduction reactions with mild applied potentials. This also resulted in a 30% improvement in COD removal compared to MFC with biocatalyst only on the anode. The function of improved bioelectrochemical treatment was also exhibited by redox current values of cyclic voltammograms. ? 2018 Elsevier LtdThis publication was made possible by NPRP grant # 6-289-2-125 from the Qatar national research fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors. The Authors would like to acknowledge the Environmental Science Centre (ESC) , Qatar University for the support in evaluating the samples for diesel range organics (DROs).Scopu

    Induced bioelectrochemical metabolism for bioremediation of petroleum refinery wastewater: Optimization of applied potential and flow of wastewater

    No full text
    Hybrid based bioelectrochemical system (BES) configured with embedded anode and cathode electrodes in soil was tested for the bioelectrochemical degradation of petroleum refinery wastewater (PRW). Four applied potentials were studied to optimize under batch mode operation, among which 2 V resulted in higher COD degradation (69.2%) and power density (725 mW/m2) during 7 days of operation. Further studies with continuous mode of operation at optimized potential (2 V) showed that hydraulic retention time (HRT) of 19 h achieved the highest COD removal (37%) and highest power density (561 mW/m2). BES function with respect to treatment efficiencies of other pollutants of PRW was also identified with respect to oil and grease (batch mode, 91%; continuous mode, 34%), total dissolved salts (batch mode, 53%; continuous mode, 24%) and sulfates (batch mode, 59%; continuous mode, 42%). Soil microenvironment in association with BES forms complex processes, providing suitable conditions for efficient treatment of PRW. ? 2018 Elsevier LtdThis publication was made possible by NPRP grant # 8-594-2-244 from the Qatar National Research Fund , Qatar (a member of Qatar Foundation). The findings achieved herein are solely the responsibility of the authors

    Methane as a Substrate for Energy Generation Using Microbial Fuel Cells

    No full text
    Methane (CH 4 ) is a well-known and abundant feedstock for natural gas, and is readily available from various sources. In thermal plants, the CH 4 generated from anthropogenic sources is converted into electrical energy via combustion. Microbial fuel cell (MFC) technology has proven to be an efficient strategy for the biological conversion of a many substrates, including biogas (CH 4 ), to electricity. MFC technology uses gaseous substrate along with an enriched and selective microbial consortium. Predominantly, methanotrophs and electrochemically active Geobacter were utilized in a syntrophic association on the anode of an MFC. This review focuses on the exploitation of CH 4 as a substrate for bioelectrogenesis via MFCs.This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2018H1D3A2001746, 2013M3A6A8073184). This work was supported by the Energy Efficiency & Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (20153030091450). This research was supported by 2017 KU Brain Pool of Konkuk University.Scopu

    Utilization of residual organics of Labaneh whey for renewable energy generation through bioelectrochemical processes: Strategies for enhanced substrate conversion and energy generation

    No full text
    Labaneh whey (LW)that is rich in residual organics was evaluated for bioelectricity generation using microbial fuel cell (MFC)in two different configurations namely single chamber (MFC-SC)and dual chamber (MFC-DC)MFCs. The whole study was executed in three stages: The first stage evidenced promising amount of bioelectricity generation (DC, 643 mV; SC, 545 mV)along with chemical oxygen demand removal (CODr: DC, 60.63%; SC, CODr: 55.25%). In the second phase, activity of anodic electrogenic microbes was improved with short time poising at potentials of 400, 600 and 800 mV, among which 800 mV evidenced 2.24 (DC)and 1.60 (SC)fold enhancement in power generation along with significant improvement in substrate degradation. The third phase was solely focused on bioelectrochemical treatment of LW through applied potentials for extended period. This phase achieved 89 and 94% chemical oxygen demand (COD)degradation using SC and DC configurations, respectively at 800 mV. - 2019 Elsevier LtdThis publication was made possible by NPRP grant # 6-289-2-125 from the Qatar national research fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors. Appendix AScopu
    corecore