229 research outputs found

    Role of Advanced Glycation End-Products and Oxidative Stress in Type-2-Diabetes-Induced Bone Fragility and Implications on Fracture Risk Stratification

    Get PDF
    Type 2 diabetes (T2D) and osteoporosis (OP) are major causes of morbidity and mortality that have arelevant health and economic burden. Recent epidemiological evidence suggests that both of these disorders are often associated with each other and that T2D patients have an increased risk of fracture, making bone an additional target of diabetes. As occurs for other diabetic complications, the increased accumulation of advanced glycation end-products (AGEs) and oxidative stress represent the major mechanisms explaining bone fragility in T2D. Both of these conditions directly and indirectly (through the promotion of microvascular complications) impair the structural ductility of bone and negatively affect bone turnover, leading to impaired bone quality, rather than decreased bone density. This makes diabetes-induced bone fragility remarkably different from other forms of OP and represents a major challenge for fracture risk stratification, since either the measurement of BMD or the use of common diagnostic algorithms for OP have a poor predictive value. We review and discuss the role of AGEs and oxidative stress on the pathophysiology of bone fragility in T2D, providing some indications on how to improve fracture risk prediction in T2D patients

    Beyond Glycemic Control in Diabetes Mellitus: Effects of Incretin-Based Therapies on Bone Metabolism

    Get PDF
    Diabetes mellitus (DM) and osteoporosis (OP) are common disorders with a significant health burden, and an increase in fracture risk has been described both in type 1 (T1DM) and in type 2 (T2DM) diabetes. The pathogenic mechanisms of impaired skeletal strength in diabetes remain to be clarified in details and they are only in part reflected by a variation in bone mineral density. In T2DM, the occurrence of low bone turnover together with a decreased osteoblast activity and compromised bone quality has been shown. Of note, some antidiabetic drugs (e.g., thiazolidinediones, insulin) may deeply affect bone metabolism. In addition, the recently introduced class of incretin-based drugs (i.e., GLP-1 receptor agonists and DPP-4 inhibitors) is expected to exert potentially beneficial effects on bone health, possibly due to a bone anabolic activity of GLP-1, that can be either direct or indirect through the involvement of thyroid C cells. Here we will review the established as well as the putative effects of incretin hormones and of incretin-based drugs on bone metabolism, both in preclinical models and in man, taking into account that such therapeutic strategy may be effective not only to achieve a good glycemic control, but also to improve bone health in diabetic patients

    The effects of vegetarian diets on bone health: a literature review

    Get PDF
    In these recent years many people are adopting a vegetarian type diet due to the numerous positive health effects of this regimen such as the reduction of the incidence of many chronic disorders like diabetes, hypertension, obesity and cancer. However this diet is quite restrictive and so it could be possible to have a deficiency in some specific nutrients, increasing the risk of osteoporosis and fractures. Although there are conflicting results on the effects of the vegetarian diet on bone health and fracture incidence, it is always recommendable in vegetarian people to have an adequate intake of calcium and vitamin D, through an increased intake of supplements, natural and fortified foods, an adequate intake of protein, fruit, vegetables, as well as vitamin B12. The aim of this literature review is to revise the actual knowledge of the effect of some nutrients and vegetarian diets on bone health. Copyright © 2022 Falchetti, Cavati, Valenti, Mingiano, Cosso, Gennari, Chiodini and Merlotti

    Bone fragility in gastrointestinal disorders

    Get PDF
    Osteoporosis is a common systemic disease of the skeleton, characterized by compromised bone mass and strength, consequently leading to an increased risk of fragility fractures. In women, the disease mainly occurs due to the menopausal fall in estrogen levels, leading to an imbalance between bone resorption and bone formation and, consequently, to bone loss and bone fragility. Moreover, osteoporosis may affect men and may occur as a sequela to different diseases or even to their treatments. Despite their wide prevalence in the general population, the skeletal implications of many gastrointestinal diseases have been poorly investigated and their potential contribution to bone fragility is often underestimated in clinical practice. However, proper functioning of the gastrointestinal system appears essential for the skeleton, allowing correct absorption of calcium, vitamins, or other nutrients relevant to bone, preserving the gastrointestinal barrier function, and maintaining an optimal endocrine-metabolic balance, so that it is very likely that most chronic diseases of the gastrointestinal tract, and even gastrointestinal dysbiosis, may have profound implications for bone health. In this manuscript, we provide an updated and critical revision of the role of major gastrointestinal disorders in the pathogenesis of osteoporosis and fragility fractures. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Prediction of Overall Survival in Cervical Cancer Patients Using PET/CT Radiomic Features

    Get PDF
    Background: Radiomics is a field of research medicine and data science in which quantitative imaging features are extracted from medical images and successively analyzed to develop models for providing diagnostic, prognostic, and predictive information. The purpose of this work was to develop a machine learning model to predict the survival probability of 85 cervical cancer patients using PET and CT radiomic features as predictors. Methods: Initially, the patients were divided into two mutually exclusive sets: a training set containing 80% of the data and a testing set containing the remaining 20%. The entire analysis was separately conducted for CT and PET features. Genetic algorithms and LASSO regression were used to perform feature selection on the initial PET and CT feature sets. Two different survival models were employed: the Cox proportional hazard model and random survival forest. The Cox model was built using the subset of features obtained with the feature selection process, while all the available features were used for the random survival forest model. The models were trained on the training set; cross-validation was used to fine-tune the models and to obtain a preliminary measurement of the performance. The models were then validated on the test set, using the concordance index as the metric. In addition, alternative versions of the models were developed using tumor recurrence as an adjunct feature to evaluate its impact on predictive performance. Finally, the selected CT and PET features were combined to build a further Cox model. Results: The genetic algorithm was superior to the LASSO regression for feature selection. The best performing model was the Cox model, which was built using the selected CT features; it achieved a concordance index score of 0.707. With the addition of tumor recurrence as a predictive feature, the Cox CT model reached a concordance index score of 0.776. PET features, however, proved to be inadequate for survival prediction. The CT model performed better than the model with combined PET and CT features. Conclusions: The results showed that radiomic features can be used to successfully predict survival probability in cervical cancer patients. In particular, CT radiomic features proved to be better predictors than PET radiomic features in this specific case

    Pathophysiology and Management of Type 2 Diabetes Mellitus Bone Fragility

    Get PDF
    Individuals with type 2 diabetes mellitus (T2DM) have an increased risk of bone fragility fractures compared to nondiabetic subjects. This increased fracture risk may occur despite normal or even increased values of bone mineral density (BMD), and poor bone quality is suggested to contribute to skeletal fragility in this population. These concepts explain why the only evaluation of BMD could not be considered an adequate tool for evaluating the risk of fracture in the individual T2DM patient. Unfortunately, nowadays, the bone quality could not be reliably evaluated in the routine clinical practice. On the other hand, getting further insight on the pathogenesis of T2DM-related bone fragility could consent to ameliorate both the detection of the patients at risk for fracture and their appropriate treatment. The pathophysiological mechanisms underlying the increased risk of fragility fractures in a T2DM population are complex. Indeed, in T2DM, bone health is negatively affected by several factors, such as inflammatory cytokines, muscle-derived hormones, incretins, hydrogen sulfide (H2S) production and cortisol secretion, peripheral activation, and sensitivity. All these factors may alter bone formation and resorption, collagen formation, and bone marrow adiposity, ultimately leading to reduced bone strength. Additional factors such as hypoglycemia and the consequent increased propensity for falls and the direct effects on bone and mineral metabolism of certain antidiabetic medications may contribute to the increased fracture risk in this population. The purpose of this review is to summarize the literature evidence that faces the pathophysiological mechanisms underlying bone fragility in T2DM patients

    Pathophysiology and Management of Type 2 Diabetes Mellitus Bone Fragility

    Get PDF
    Individuals with type 2 diabetes mellitus (T2DM) have an increased risk of bone fragility fractures compared to nondiabetic subjects. This increased fracture risk may occur despite normal or even increased values of bone mineral density (BMD), and poor bone quality is suggested to contribute to skeletal fragility in this population. These concepts explain why the only evaluation of BMD could not be considered an adequate tool for evaluating the risk of fracture in the individual T2DM patient. Unfortunately, nowadays, the bone quality could not be reliably evaluated in the routine clinical practice. On the other hand, getting further insight on the pathogenesis of T2DM-related bone fragility could consent to ameliorate both the detection of the patients at risk for fracture and their appropriate treatment. The pathophysiological mechanisms underlying the increased risk of fragility fractures in a T2DM population are complex. Indeed, in T2DM, bone health is negatively affected by several factors, such as inflammatory cytokines, muscle-derived hormones, incretins, hydrogen sulfide (H2S) production and cortisol secretion, peripheral activation, and sensitivity. All these factors may alter bone formation and resorption, collagen formation, and bone marrow adiposity, ultimately leading to reduced bone strength. Additional factors such as hypoglycemia and the consequent increased propensity for falls and the direct effects on bone and mineral metabolism of certain antidiabetic medications may contribute to the increased fracture risk in this population. The purpose of this review is to summarize the literature evidence that faces the pathophysiological mechanisms underlying bone fragility in T2DM patients
    corecore