325 research outputs found

    "Det var jag som var den dÀr vuxna och han var ett barn" : En kvalitativ studie om hur det Àr att vara ett vuxet barn till en alkoholist

    Get PDF
    Syftet med vĂ„rt lĂ€rdomsprov Ă€r att undersöka hur uppvĂ€xten i en alkoholistfamilj har pĂ„verkat det vuxna barnet. Vi undersöker Ă€ven vilka konsekvenser det vuxna barnet fĂ„tt av uppvĂ€xten, vilket förhĂ„llningssĂ€tt det vuxna barnet har till alkohol och hur relationen mellan det vuxna barnet och den missbrukande förĂ€ldern ser ut. I teoridelen definieras alkoholismen; vad Ă€r alkoholism, vem kan bli alkoholist och vad Ă€r skillnaden mellan en alkoholist och en storkonsument. Vidare faststĂ€lls missbrukets effekt pĂ„ familjen, samt barnens roller i en alkoholistfamilj. Även typiska karaktĂ€rsdrag och konsekvenser i vuxenlivet tas upp. I undersökningen har vi anvĂ€nt oss av kvalitativ undersökning. Vi har intervjuat fyra personer som har en pappa som Ă€r alkoholist. I resultatet framkommer bĂ„de likheter och olikheter mellan vuxna barn till alkoholister, men den gemensamma nĂ€mnaren Ă€r konsekvenser i vuxenlivet för alla barn som levt med en alkoholiserad förĂ€lder.The aim of our thesis is to investigate how growing up with an alcoholic parent has affected the adult child. We also examine the impact on the adult child as a result of growing up in a family where one parent is or was an alcoholic, what kind of attitude the adult child has to alcohol and how the relationship between the adult child and the alcoholic parent has been affected. In our theoretical part, we define alcoholism; what is alcoholism, who can become an alcoholic and what is the difference between an alcoholic and a big consumer. Further down we establish the impact on the family and the children's roles in the family. We also cover the typical characteristics and consequences in adult life. In the survey, we used a qualitative research. We have interviewed four people who have a father who is an alcoholic. The result shows both similarities and differences between adult children of alcoholics, but the common denominator is that all children of alcoholics are affected in adulthood

    Short-term variability and mass loss in Be stars III. BRITE and SMEI satellite photometry of 28 Cygni

    Full text link
    The BRITE Constellation of nanosatellites obtained mmag photometry of 28 Cygni for 11 months in 2014-2016. Observations with the Solar Mass Ejection Imager in 2003-2010 and 118 Hα\alpha line profiles were added. For decades, 28 Cyg has exhibited four large-amplitude frequencies: two closely spaced frequencies of spectroscopically confirmed gg modes near 1.5 c/d, one slightly lower exophotospheric (Stefl) frequency, and at 0.05 c/d the difference frequency between the two g modes. This top-level framework is indistinguishable from eta Cen (Paper I), which is also very similar in spectral type, rotation rate, and viewing angle. The Stefl frequency is the only one that does not seem to be affected by the difference frequency. The amplitude of the latter undergoes large variations; around maximum the amount of near-circumstellar matter is increased, and the amplitude of the Stefl frequency grows by some factor. During such brightenings dozens of transient spikes appear in the frequency spectrum, concentrated in three groups. Only eleven frequencies were common to all years of BRITE observations. Be stars seem to be controlled by several coupled clocks, most of which are not very regular on timescales of weeks to months but function for decades. The combination of g modes to the low difference frequency and/or the atmospheric response to it appears significantly nonlinear. Like in eta Cen, the difference-frequency variability seems the main responsible for the modulation of the star-to-disc mass transfer in 28 Cyg. A hierarchical set of difference frequencies may reach the longest timescales known of the Be phenomenon.Comment: 17 pages, 21 figures, submitted to Astronomy & Astrophysic

    Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies

    Get PDF
    Superluminous supernovae (SLSNe) are very bright explosions that were only discovered recently and that show a preference for occurring in faint dwarf galaxies. Understanding why stellar evolution yields different types of stellar explosions in these environments is fundamental in order to both uncover the elusive progenitors of SLSNe and to study star formation in dwarf galaxies. In this paper, we present the first results of our project to study SUperluminous Supernova Host galaxIES, focusing on the sample for which we have obtained spectroscopy. We show that SLSNe-I and SLSNe-R (hydrogen-poor) often (~50% in our sample) occur in a class of galaxies that is known as Extreme Emission Line Galaxies (EELGs). The probability of this happening by chance is negligible and we therefore conclude that the extreme environmental conditions and the SLSN phenomenon are related. In contrast, SLSNe-II (hydrogen-rich) occur in more massive, more metal-rich galaxies with softer radiation fields. Therefore, if SLSNe-II constitute a uniform class, their progenitor systems are likely different from those of H-poor SLSNe. Gamma-ray bursts (GRBs) are, on average, not found in as extreme environments as H-poor SLSNe. We propose that H-poor SLSNe result from the very first stars exploding in a starburst, even earlier than GRBs. This might indicate a bottom-light initial mass function in these systems. SLSNe present a novel method of selecting candidate EELGs independent of their luminosity.Comment: Published version, matches proofs. Accepted 2015 February 13. 23 pages, 8 figures, 4 tables. Minor changes with respect to previous versio

    Mid-infrared evolution of eta Carinae from 1968 to 2018

    Get PDF
    η Car is one of the most luminous and massive stars in our Galaxy and is the brightest mid-IR source in the sky outside our solar system. Since the late 1990s, the central source has dramatically brightened at UV and optical wavelengths. This might be explained by a decrease in circumstellar dust extinction. We aim to establish the mid-IR flux evolution and further our understanding of the star’s UV and optical brightening. Mid-IR images from 8−20 ”m were obtained in 2018 with VISIR at the Very Large Telescope. Archival data from 2003 and 2005 were retrieved from the ESO Science Archive Facility, and historical records were collected from publications. We present mid-IR images of η Car with the highest angular resolution to date at the corresponding wavelengths (≄0.2200). We reconstruct the mid-IR evolution of the spectral energy distribution of the spatially integrated Homunculus nebula from 1968 to 2018 and find no long-term changes. The bolometric luminosity of η Car has been stable over the past five decades. We do not observe a long-term decrease in the mid-IR flux densities that could be associated with the brightening at UV and optical wavelengths, but circumstellar dust must be declining in our line of sight alone. Short-term flux variations within about 25% of the mean levels could be present

    Preparation of Ni–YSZ thin and thick films on metallic interconnects as cell supports. Applications as anode for SOFC

    Get PDF
    In this work, we propose the preparation of a duplex anodic layer composed of both a thin (100 nm) and a thick film (10 lm) with Ni–YSZ material. The support of this anode is a metallic substrate, which is the interconnect of the SOFC unit cell. The metallic support limits the temperature of thermal treatment at 800 C to keep a good interconnect mechanical behaviour and to reduce corrosion. We have chosen to elaborate anodic coatings by sol–gel route coupled with dip-coating process, which are low cost techniques and allow working with moderate temperatures. Thin films are obtained by dipping interconnect substrate into a sol, and thick films into an optimized slurry. After thermal treatment at only 800 C, anodic coatings are adherent and homogeneous. Thin films have compact microstructures that confer ceramic protective barrier on metal surface. Further coatings of 10 lm thick are porous and constitute the active anodic material

    Eta Carinae -- Physics of the Inner Ejecta

    Full text link
    Eta Carinae's inner ejecta are dominated observationally by the bright Weigelt blobs and their famously rich spectra of nebular emission and absorption lines. They are dense (n_e ~ 10^7 to 10^8 cm^-3), warm (T_e ~ 6000 to 7000 K) and slow moving (~40 km/s) condensations of mostly neutral (H^0) gas. Located within 1000 AU of the central star, they contain heavily CNO-processed material that was ejected from the star about a century ago. Outside the blobs, the inner ejecta include absorption-line clouds with similar conditions, plus emission-line gas that has generally lower densities and a wider range of speeds (reaching a few hundred km/s) compared to the blobs. The blobs appear to contain a negligible amount of dust and have a nearly dust-free view of the central source, but our view across the inner ejecta is severely affected by uncertain amounts of dust having a patchy distribution in the foreground. Emission lines from the inner ejecta are powered by photoionization and fluorescent processes. The variable nature of this emission, occurring in a 5.54 yr event cycle, requires specific changes to the incident flux that hold important clues to the nature of the central object.Comment: This is Chapter 5 in a book entitled: Eta Carinae and the Supernova Impostors, Kris Davidson and Roberta M. Humphreys, editors Springe

    Hard X-ray identification of Eta Carinae and steadiness close to periastron

    Full text link
    Context: The colliding-wind binary Eta Car exhibits soft X-ray thermal emission that varies strongly around periastron, and non-thermal emission seen in hard X-rays and gamma-rays. Aims: To definitively identify Eta Car as the source of the hard X-ray emission, to examine how changes in the 2-10 keV band influence changes in the hard X-ray band, and to understand more clearly the mechanisms producing the non-thermal emission using new INTEGRAL observations obtained close to periastron. Methods: A Chandra observation encompassing the ISGRI error circle was analysed, and all other soft X-ray sources (including the outer shell of Eta Car itself) were discarded as likely counter-parts. New hard X-ray images of Eta Car were studied close to periastron, and compared to previous observations far from periastron. Results: The INTEGRAL component, when represented by a power law (with a photon index of 1.8), would produce more emission in the Chandra band than observed from any point source in the ISGRI error circle apart from Eta Car, as long as the hydrogen column density to the ISGRI source is lower than 1E24 cm^{-2}. Such sources are rare, thus the ISGRI emission is very likely to be associated with Eta Car. The eventual contribution of the outer shell to the non-thermal component also remains fairly limited. Close to periastron, a 3-sigma detection is achieved for the hard X-ray emission of Eta Car, with a flux similar to the average value far from periastron. Conclusions: Assuming a single absorption component for both the thermal and non-thermal sources, this detection can be explained with a hydrogen column density that does not exceed 6E23 cm^{-2} without resorting to an intrinsic increase in the hard X-ray emission. The energy injected in hard X-rays (averaged over a month) appears rather constant as close as a few stellar radii, well within the acceleration region of the wind.Comment: 9 pages with 5 figures. Accepted for publication in Astronomy & Astrophysic

    A 3D‐Bioprinted Vascularized Glioblastoma‐on‐a‐Chip for Studying the Impact of Simulated Microgravity as a Novel Pre‐Clinical Approach in Brain Tumor Therapy

    Full text link
    Glioblastoma multiforme (GBM) is one of the most aggressive malignant brain tumors and urgently requires the development of new therapeutic strategies. In this study, an innovative hybrid in vitro vascularized GBM-on-a-chip model is presented as a strategic integration of microfluidics and 3D bioprinting technologies. The system can recreate the compartmentalized brain tumor microenvironment, comprising the functional blood brain barrier (BBB) and the adjacent 3D perivascular tumor niche, by selectively mimicking physiological shear stress and cell–cell, cell–matrix mechanical interaction. The GBM-on-a-chip model was evaluated under simulated microgravity (”G) condition as a form of mechanical unloading showing a significant cell morphological and mechanotransduction response thereby indicating that gravitational forces play an important role in glioblastoma mechanical regulation. The proposed GBM-on-a-chip represents a meaningful biological tool for further research in cancer mechanobiology and pre-clinical approach in brain tumor therapy
    • 

    corecore