2,409 research outputs found

    Dosage compensation in birds

    Get PDF
    AbstractThe Z and W sex chromosomes of birds have evolved independently from the mammalian X and Y chromosomes [1]. Unlike mammals, female birds are heterogametic (ZW), while males are homogametic (ZZ). Therefore male birds, like female mammals, carry a double dose of sex-linked genes relative to the other sex. Other animals with nonhomologous sex chromosomes possess “dosage compensation” systems to equalize the expression of sex-linked genes. Dosage compensation occurs in animals as diverse as mammals, insects, and nematodes, although the mechanisms involved differ profoundly [2]. In birds, however, it is widely accepted that dosage compensation does not occur [3–5], and the differential expression of Z-linked genes has been suggested to underlie the avian sex-determination mechanism [6]. Here we show equivalent expression of at least six of nine Z chromosome genes in male and female chick embryos by using real-time quantitative PCR [7]. Only the Z-linked ScII gene, whose ortholog in Caenorhabditis elegans plays a crucial role in dosage compensation [8], escapes compensation by this assay. Our results imply that the majority of Z-linked genes in the chicken are dosage compensated

    Geography and Giving: The Culture of Philanthropy in New England and the Nation

    Get PDF
    Looks at aggregate household wealth and income at the national level and for Massachusetts as a state, and analyzes levels of charitable giving in relation to household income

    Ballistic magnon heat conduction and possible Poiseuille flow in the helimagnetic insulator Cu2_2OSeO3_3

    Full text link
    We report on the observation of magnon thermal conductivity κm\kappa_m\sim 70 W/mK near 5 K in the helimagnetic insulator Cu2_2OSeO3_3, exceeding that measured in any other ferromagnet by almost two orders of magnitude. Ballistic, boundary-limited transport for both magnons and phonons is established below 1 K, and Poiseuille flow of magnons is proposed to explain a magnon mean-free path substantially exceeding the specimen width for the least defective specimens in the range 2 K <T<<T< 10 K. These observations establish Cu2_2OSeO3_3 as a model system for studying long-wavelength magnon dynamics.Comment: 10pp, 9 figures, accepted PRB (Editor's Suggestion

    Acoustic correlates of Dutch lexical stress re-examined: Spectral tilt is not always more reliable than intensity

    Get PDF
    The present study examined two acoustic cues in the production of lexical stress in Dutch: spectral tilt and overall intensity. Sluijter and Van Heuven (1996) reported that spectral tilt is a more reliable cue to stress than intensity. However, that study included only a small number of talkers (10) and only syllables with the vowels /aː/ and /ɔ/. The present study re-examined this issue in a larger and more variable dataset. We recorded 38 native speakers of Dutch (20 females) producing 744 tokens of Dutch segmentally overlapping words (e.g., VOORnaam vs. voorNAAM, “first name” vs. “respectable”), targeting 10 different vowels, in variable sentence contexts. For each syllable, we measured overall intensity and spectral tilt following Sluijter and Van Heuven (1996). Results from Linear Discriminant Analyses showed that, for the vowel /aː/ alone, spectral tilt showed an advantage over intensity, as evidenced by higher stressed/unstressed syllable classification accuracy scores for spectral tilt. However, when all vowels were included in the analysis, the advantage disappeared. These findings confirm that spectral tilt plays a larger role in signaling stress in Dutch /aː/ but show that, for a larger sample of Dutch vowels, overall intensity and spectral tilt are equally important

    Pseudogap Formation in the Symmetric Anderson Lattice Model

    Full text link
    We present self-consistent calculations for the self-energy and magnetic susceptibility of the 2D and 3D symmetric Anderson lattice Hamiltonian, in the fluctuation exchange approximation. At high temperatures, strong f-electron scattering leads to broad quasiparticle spectral functions, a reduced quasiparticle band gap, and a metallic density of states. As the temperature is lowered, the spectral functions narrow and a pseudogap forms at the characteristic temperature TxT_x at which the width of the quasiparticle spectral function at the gap edge is comparable to the renormalized activation energy. For T<<TxT << T_x , the pseudogap is approximately equal to the hybridization gap in the bare band structure. The opening of the pseudogap is clearly apparent in both the spin susceptibility and the compressibility.Comment: RevTeX - 14 pages and 7 figures (available on request), NRL-JA-6690-94-002

    Listeners track talker-specific prosody to deal with talker-variability

    Get PDF
    One of the challenges in speech perception is that listeners must deal with considerable segmental and suprasegmental variability in the acoustic signal due to differences between talkers. Most previous studies have focused on how listeners deal with segmental variability. In this EEG experiment, we investigated whether listeners track talker-specific usage of suprasegmental cues to lexical stress to recognize spoken words correctly. In a three-day training phase, Dutch participants learned to map non-word minimal stress pairs onto different object referents (e.g., USklot meant “lamp”; usKLOT meant “train”). These non-words were produced by two male talkers. Critically, each talker used only one suprasegmental cue to signal stress (e.g., Talker A used only F0 and Talker B only intensity). We expected participants to learn which talker used which cue to signal stress. In the test phase, participants indicated whether spoken sentences including these non-words were correct (“The word for lamp is…”). We found that participants were slower to indicate that a stimulus was correct if the non-word was produced with the unexpected cue (e.g., Talker A using intensity). That is, if in training Talker A used F0 to signal stress, participants experienced a mismatch between predicted and perceived phonological word-forms if, at test, Talker A unexpectedly used intensity to cue stress. In contrast, the N200 amplitude, an event-related potential related to phonological prediction, was not modulated by the cue mismatch. Theoretical implications of these contrasting results are discussed. The behavioral findings illustrate talker-specific prediction of prosodic cues, picked up through perceptual learning during training

    Tissue-specific spatial organization of genomes

    Get PDF
    BACKGROUND: Genomes are organized in vivo in the form of chromosomes. Each chromosome occupies a distinct nuclear subvolume in the form of a chromosome territory. The spatial positioning of chromosomes within the interphase nucleus is often nonrandom. It is unclear whether the nonrandom spatial arrangement of chromosomes is conserved among tissues or whether spatial genome organization is tissue-specific. RESULTS: Using two-dimensional and three-dimensional fluorescence in situ hybridization we have carried out a systematic analysis of the spatial positioning of a subset of mouse chromosomes in several tissues. We show that chromosomes exhibit tissue-specific organization. Chromosomes are distributed tissue-specifically with respect to their position relative to the center of the nucleus and also relative to each other. Subsets of chromosomes form distinct types of spatial clusters in different tissues and the relative distance between chromosome pairs varies among tissues. Consistent with the notion that nonrandom spatial proximity is functionally relevant in determining the outcome of chromosome translocation events, we find a correlation between tissue-specific spatial proximity and tissue-specific translocation prevalence. CONCLUSIONS: Our results demonstrate that the spatial organization of genomes is tissue-specific and point to a role for tissue-specific spatial genome organization in the formation of recurrent chromosome arrangements among tissues

    Density of Phonon States in Superconducting FeSe as a Function of Temperature and Pressure

    Full text link
    The temperature and pressure dependence of the partial density of phonon states of iron atoms in superconducting Fe1.01Se was studied by 57Fe nuclear inelastic scattering (NIS). The high energy resolution allows for a detailed observation of spectral properties. A sharpening of the optical phonon modes and shift of all spectral features towards higher energies by ~4% with decreasing temperature from 296 K to 10 K was found. However, no detectable change at the tetragonal - orthorhombic phase transition around 100 K was observed. Application of a pressure of 6.7 GPa, connected with an increase of the superconducting temperature from 8 K to 34 K, results in an increase of the optical phonon mode energies at 296 K by ~12%, and an even more pronounced increase for the lowest-lying transversal acoustic mode. Despite these strong pressure-induced modifications of the phonon-DOS we conclude that the pronounced increase of Tc in Fe1.01Se with pressure cannot be described in the framework of classical electron-phonon coupling. This result suggests the importance of spin fluctuations to the observed superconductivity
    corecore