831 research outputs found

    Microscopic Study of 1S0{}^1{S_0} Superfluidity in Dilute Neutron Matter

    Full text link
    Singlet SS-wave superfluidity of dilute neutron matter is studied within the correlated BCS method, which takes into account both pairing and short-range correlations. First, the equation of state (EOS) of normal neutron matter is calculated within the Correlated Basis Function (CBF) method in lowest cluster order using the 1S0{}^1{S_0} and 3P{}^3P components of the Argonne V18V_{18} potential, assuming trial Jastrow-type correlation functions. The 1S0{}^1{S_0} superfluid gap is then calculated with the corresponding component of the Argonne V18V_{18} potential and the optimally determined correlation functions. The dependence of our results on the chosen forms for the correlation functions is studied, and the role of the PP-wave channel is investigated. Where comparison is meaningful, the values obtained for the 1S0{}^1{S_0} gap within this simplified scheme are consistent with the results of similar and more elaborate microscopic methods.Comment: 9 pages, 6 figure

    The Effect of the Short-Range Correlations on the Generalized Momentum Distribution in Finite Nuclei

    Full text link
    The effect of dynamical short-range correlations on the generalized momentum distribution n(p⃗,Q⃗)n(\vec{p},\vec{Q}) in the case of Z=NZ=N, ℓ\ell-closed shell nuclei is investigated by introducing Jastrow-type correlations in the harmonic-oscillator model. First, a low order approximation is considered and applied to the nucleus 4^4He. Compact analytical expressions are derived and numerical results are presented and the effect of center-of-mass corrections is estimated. Next, an approximation is proposed for n(p⃗,Q⃗)n(\vec{p}, \vec{Q}) of heavier nuclei, that uses the above correlated n(p⃗,Q⃗)n(\vec{p},\vec{Q}) of 4^4He. Results are presented for the nucleus 16^{16}O. It is found that the effect of short-range correlations is significant for rather large values of the momenta pp and/or QQ and should be included, along with center of mass corrections for light nuclei, in a reliable evaluation of n(p⃗,Q⃗)n(\vec{p},\vec{Q}) in the whole domain of pp and QQ.Comment: 29 pages, 8 figures. Further results, figures and discussion for the CM corrections are added. Accepted by Journal of Physics

    A nonlinear classical model for the decay widths of Isoscalar Giant Monopole Resonances

    Full text link
    The decay of the Isoscalar Giant Monopole Resonance (ISGMR) in nuclei is studied by means of a nonlinear classical model consisting of several noninteracting nucleons (particles) moving in a potential well with an oscillating nuclear surface (wall). The motion of the nuclear surface is described by means of a collective variable which appears explicitly in the Hamiltonian as an additional degree of freedom. The total energy of the system is therefore conserved. Although the particles do not directly interact with each other, their motions are indirectly coupled by means of their interaction with the moving nuclear surface. We consider as free parameters in this model the degree of collectivity and the fraction of nucleons that participate to the decay of the collective excitation. Specifically, we have calculated the decay width of the ISGMR in the spherical nuclei 208Pb^{208}\rm{Pb}, 144Sm^{144}\rm{Sm}, 116Sn^{116}\rm{Sn} and 90Zr^{90}\rm{Zr}. Despite its simplicity and its purely classical nature, the model reproduces the trend of the experimental data which show that with increasing mass number the decay width decreases. Moreover the experimental results (with the exception of 90Zr^{90}\rm{Zr}) can be well fitted using appropriate values for the free parameters mentioned above. It is also found that these values allow for a good description of the experimentally measured 112Sn^{112}\rm{Sn} and 124Sn^{124}\rm{Sn} decay widths. In addition, we give a prediction for the decay width of the exotic isotope 132Sn^{132}Sn for which there is experimental interest. The agreement of our results with the corresponding experimental data for medium-heavy nuclei is dictated by the underlying classical mechanics i.e. the behaviour of the maximum Lyapunov exponent as a function of the system size

    The association of parental genetic, lifestyle, and social determinants of health with offspring overweight

    Get PDF
    In the UK, the number of comorbidities seen in children has increased along with the worsening obesity rate. These comorbidities worsen into adulthood. Genomewide association studies have highlighted single nucleotide polymorphisms associated with the weight status of adults and offspring individually. To date, in the UK, parental genetic, lifestyle, and social determinants of health have not been investigated alongside one another as influencers of offspring weight status. A comprehensive obesity prevention scheme would commence prior to conception and involve parental intervention including all known risk factors. This current study aims to identify the proportion of overweight that can be explained by known parental risk factors, including genetic, lifestyle, and social determinants of health with offspring weight status in the UK. Methods: A crosssectional study was carried out on 123 parents. Parental and offspring anthropometric data and parental lifestyle and social determinants of health data were self-reported. Parental genetic data were collected by use of GeneFiX saliva collection vials and genotype were assessed for brain-derived neurotrophic factor (BDNF) gene rs6265, melanocortin 4 receptor (MC4R) gene rs17782313, transmembrane protein 18 (TMEM18) gene rs2867125, and serine/threonine-protein kinase (TNN13K) gene rs1514175. Associations were assessed between parental data and the weight status of offspring. Results: Maternal body mass index modestly predicted child weight status (p < 0.015; R2 = 0.15). More mothers of overweight children carried the MC4R rs17782313 risk allele (77.8%; p = 0.007) compared to mothers of normal-weight children. Additionally, fathers who were not Caucasian and parents who slept for < 7 h/night had a larger percentage of overweight children when compared to their counterparts (p = 0.039; p = 0.014, respectively). Conclusion: Associations exist between the weight status of offspring based solely on parental genetic, lifestyle, and social determinants of health data. Further research is required to appropriately address future interventions based on genetic and lifestyle risk groups on a pre-parent cohort

    A microscopic investigation of the transition form factor in the region of collective multipole excitations of stable and unstable nuclei

    Full text link
    We have used a self-consistent Skyrme-Hartree-Fock plus Continuum-RPA model to study the low-multipole response of stable and neutron/proton-rich Ni and Sn isotopes. We focus on the momentum-transfer dependence of the strength distribution, as it provides information on the structure of excited nuclear states and in particular on the variations of the transition form factor (TFF) with the energy. Our results show, among other things, that the TFF may show significant energy dependence in the region of the isoscalar giant monopole resonance and that the TFF corresponding to the threshold strength in the case of neutron-rich nuclei is different compared to the one corresponding to the respective giant resonance. Perspectives are given for more detailed future investigations.Comment: 13 pages, incl. 9 figures; to appear in J.Phys.G, http://www.iop.org/EJ/jphys

    Final-state interactions in the response of nuclear matter

    Get PDF
    Final-state interactions in the response of a many-body system to an external probe delivering large momentum are normally described using the eikonal approximation, for the trajectory of the struck particle, and the frozen approximation, for the positions of the spectators. We propose a generalization of this scheme, in which the initial momentum of the struck particle is explicitly taken into account. Numerical calculations of the nuclear matter response at 1 <∣q∣<< |{\bf q}| < 2 GeV/c show that the inclusion of this momentum dependence leads to a sizable effect in the low energy tail. Possible implications for the analysis of existing electron-nucleus scattering data are discussed.Comment: 21 pages, 4 figure
    • …
    corecore