872 research outputs found
Stress-Induced Variations in the Stiffness of Micro- and Nanocantilever Beams
The effect of surface stress on the stiffness of cantilever beams remains an outstanding problem in the physical sciences. While numerous experimental studies report significant stiffness change due to surface stress, theoretical predictions are unable to rigorously and quantitatively reconcile these observations. In
this Letter, we present the first controlled measurements of stress-induced change in cantilever stiffness with commensurate theoretical quantification. Simultaneous measurements are also performed on equivalent clamped-clamped beams. All experimental results are quantitatively and accurately predicted using elasticity theory. We also present conclusive experimental evidence for invalidity of the longstanding and unphysical axial force model, which has been widely applied to interpret measurements using cantilever beams. Our findings will be of value in the development of micro- and nanoscale resonant mechanical sensors
Piezoelectric nanoelectromechanical resonators based on aluminum nitride thin films
We demonstrate piezoelectrically actuated, electrically tunable nanomechanical resonators based on multilayers containing a 100-nm-thin aluminum nitride (AlN) layer. Efficient piezoelectric actuation of very high frequency fundamental flexural modes up to ~80 MHz is demonstrated at room temperature. Thermomechanical fluctuations of AlN cantilevers measured by optical interferometry enable calibration of the transduction responsivity and displacement sensitivities of the resonators. Measurements and analyses show that the 100 nm AlN layer employed has an excellent piezoelectric coefficient, d_(31)=2.4 pm/V. Doubly clamped AlN beams exhibit significant frequency tuning behavior with applied dc voltage
A Passive Phase Noise Cancellation Element
We introduce a new method for reducing phase noise in oscillators, thereby
improving their frequency precision. The noise reduction device consists of a
pair of coupled nonlinear resonating elements that are driven parametrically by
the output of a conventional oscillator at a frequency close to the sum of the
linear mode frequencies. Above the threshold for parametric response, the
coupled resonators exhibit self-oscillation at an inherent frequency. We find
operating points of the device for which this periodic signal is immune to
frequency noise in the driving oscillator, providing a way to clean its phase
noise. We present results for the effect of thermal noise to advance a broader
understanding of the overall noise sensitivity and the fundamental operating
limits
Surpassing Fundamental Limits of Oscillators Using Nonlinear Resonators
In its most basic form an oscillator consists of a resonator driven on resonance, through feedback, to create a periodic signal sustained by a static energy source. The generation of a stable frequency, the basic function of oscillators, is typically achieved by increasing the amplitude of motion of the resonator while remaining within its linear, harmonic regime. Contrary to this conventional paradigm, in this Letter we show that by operating the oscillator at special points in the resonator’s anharmonic regime we can overcome fundamental limitations of oscillator performance due to thermodynamic noise as well as practical limitations due to noise from the sustaining circuit. We develop a comprehensive model that accounts for the major contributions to the phase noise of the nonlinear oscillator. Using a nanoelectromechanical system based oscillator, we experimentally verify the existence of a special region in the operational parameter space that enables suppressing the most significant contributions to the oscillator’s phase noise, as predicted by our model
The Green Bank Northern Celestial Cap Pulsar Survey II: The Discovery and Timing of Ten Pulsars
We present timing solutions for ten pulsars discovered in 350 MHz searches
with the Green Bank Telescope. Nine of these were discovered in the Green Bank
Northern Celestial Cap survey and one was discovered by students in the Pulsar
Search Collaboratory program in analysis of drift-scan data. Following
discovery and confirmation with the Green Bank Telescope, timing has yielded
phase-connected solutions with high precision measurements of rotational and
astrometric parameters. Eight of the pulsars are slow and isolated, including
PSR J09302301, a pulsar with nulling fraction lower limit of 30\% and
nulling timescale of seconds to minutes. This pulsar also shows evidence of
mode changing. The remaining two pulsars have undergone recycling, accreting
material from binary companions, resulting in higher spin frequencies. PSR
J05572948 is an isolated, 44 \rm{ms} pulsar that has been partially recycled
and is likely a former member of a binary system which was disrupted by a
second supernova. The paucity of such so-called `disrupted binary pulsars'
(DRPs) compared to double neutron star (DNS) binaries can be used to test
current evolutionary scenarios, especially the kicks imparted on the neutron
stars in the second supernova. There is some evidence that DRPs have larger
space velocities, which could explain their small numbers. PSR J1806+2819 is a
15 \rm{ms} pulsar in a 44 day orbit with a low mass white dwarf companion. We
did not detect the companion in archival optical data, indicating that it must
be older than 1200 Myr.Comment: 9 pages, 5 figure
Nonlinearity in nanomechanical cantilevers
Euler-Bernoulli beam theory is widely used to successfully predict the linear dynamics of micro- and nanocantilever beams. However, its capacity to characterize the nonlinear dynamics of these devices has not yet been rigorously assessed, despite its use in nanoelectromechanical systems development. In this article, we report the first highly controlled measurements of the nonlinear response of nanomechanical cantilevers using an ultralinear detection system. This is performed for an extensive range of devices to probe the validity of Euler-Bernoulli theory in the nonlinear regime. We find that its predictions deviate strongly from our measurements for the nonlinearity of the fundamental flexural mode, which show a systematic dependence on aspect ratio (length/width) together with random scatter. This contrasts with the second mode, which is always found to be in good agreement with theory. These findings underscore the delicate balance between inertial and geometric nonlinear effects in the fundamental mode, and strongly motivate further work to develop theories beyond the Euler-Bernoulli approximation
Labor Unions, Solidarity, and Money
For labor, 2018 was a year of highs and lows. A wave of teachers’ strikes in states traditionally hostile to public sector labor unionism and collective bargaining garnered widespread popular support. The passions animated by the strikes were credited with inspiring a range of progressive political shifts, including the rollback of right to work laws in Missouri and new challengers running on education platforms aimed at increasing investment in public education. Less than three months later, the Supreme Court issued its decision in Janus v. AFSCME, Council 31 invalidating agency fees that public sector unions relied on to cover costs related to collective bargaining, contract administration and grievance adjustment. Janus was a major blow to union coffers, to the Democratic Party as a recipient of labor union funds, and to other progressive causes historically supported by labor.
These developments should prompt us to rethink what labor solidarity really means. American labor law encourages unions to identify as service organizations dedicated primarily to promoting workers’ economic interests. Under the agency fee doctrine approved by the Court in Abood v. Detroit Board of Education, for example, it was constitutionally permissible for unions to negotiate agency fee arrangements by which non-union members within the bargaining unit could be required to pay a service charge to the union to subsidize the cost of collective bargaining and contract administration, as long as chargeable fees were limited to expenditures “for the purposes of collective bargaining, contract administration, and grievance adjustment.” Straining to salvage union funding, the unions argued in Janus that compelled subsidization via agency fees did not implicate workers’ First Amendment interests because the union’s speech at the bargaining table and in contract administration contexts dealt only with “prosaic” “‘bread-and-butter’ employment issues” rather than with significant matters of public concern. Thus, the unions’ arguments in Janus embraced a vision of solidarity in which unions function as economic agents engaged in transactional relationships with workers over a narrow range of economic subjects, rather than political entities advancing issues of common concern to workers and the public, such as the trend of state disinvestment in public schools and its impact on democratic participation.
At a legal level, the arguments raised in Janus are not surprising. But turning the future of public sector unionism into a battle over money was short-sighted. Subsequent proposals to bring back agency fee arrangements in another form make worker engagement largely irrelevant to union survival, undermine incentives for internal union democracy and a participative culture, and eschew the kind of grassroots solidarity that has historically been the source of workers’ power. Labor’s greatest successes in 2018 demonstrate the power that can arise from grassroots mobilization of workers and citizens alike in a movement that transcends workplace boundaries and politicizes workers’ struggles. In some ways, the Janus Court got things right: public sector unions are political entities, they do (and should) engage in advocacy for reform that transcends bread-and-butter employment issues, and funding should come from workers and others who support those agendas. It is time to divorce the need for funding from the meaning of solidarity and to relinquish the vision of unions as service organizations that has indirectly cabined labor’s mission, undermined incentives to do vigorous internal organizing and to work toward members’ full engagement, and contributed to an outsized reliance on law -- particularly the exclusivity doctrine and the principle of majority rule -- as the source of worker power.
Unions should not allow solidarity to be defined by money. Especially in a time when labor unions are under siege, unions must stand for more, not less. They should embrace their political identities rather than seeking to avoid or deny them. Ultimately, law reform will follow the moral legitimation of labor’s demands, not precede it
Hip fracture risk assessment: Artificial neural network outperforms conditional logistic regression in an age- and sex-matched case control study
Copyright @ 2013 Tseng et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.Background - Osteoporotic hip fractures with a significant morbidity and excess mortality among the elderly have imposed huge health and economic burdens on societies worldwide. In this age- and sex-matched case control study, we examined the risk factors of hip fractures and assessed the fracture risk by conditional logistic regression (CLR) and ensemble artificial neural network (ANN). The performances of these two classifiers were compared.
Methods - The study population consisted of 217 pairs (149 women and 68 men) of fractures and controls with an age older than 60 years. All the participants were interviewed with the same standardized questionnaire including questions on 66 risk factors in 12 categories. Univariate CLR analysis was initially conducted to examine the unadjusted odds ratio of all potential risk factors. The significant risk factors were then tested by multivariate analyses. For fracture risk assessment, the participants were randomly divided into modeling and testing datasets for 10-fold cross validation analyses. The predicting models built by CLR and ANN in modeling datasets were applied to testing datasets for generalization study. The performances, including discrimination and calibration, were compared with non-parametric Wilcoxon tests.
Results - In univariate CLR analyses, 16 variables achieved significant level, and six of them remained significant in multivariate analyses, including low T score, low BMI, low MMSE score, milk intake, walking difficulty, and significant fall at home. For discrimination, ANN outperformed CLR in both 16- and 6-variable analyses in modeling and testing datasets (p?<?0.005). For calibration, ANN outperformed CLR only in 16-variable analyses in modeling and testing datasets (p?=?0.013 and 0.047, respectively).
Conclusions - The risk factors of hip fracture are more personal than environmental. With adequate model construction, ANN may outperform CLR in both discrimination and calibration. ANN seems to have not been developed to its full potential and efforts should be made to improve its performance.National Health Research Institutes in Taiwa
The increasing importance of atmospheric demand for ecosystem water and carbon fluxes
Soil moisture supply and atmospheric demand for water independently limit—and profoundly affect—vegetation productivity and water use during periods of hydrologic stress1, 2, 3, 4. Disentangling the impact of these two drivers on ecosystem carbon and water cycling is difficult because they are often correlated, and experimental tools for manipulating atmospheric demand in the field are lacking. Consequently, the role of atmospheric demand is often not adequately factored into experiments or represented in models5, 6, 7. Here we show that atmospheric demand limits surface conductance and evapotranspiration to a greater extent than soil moisture in many biomes, including mesic forests that are of particular importance to the terrestrial carbon sink8, 9. Further, using projections from ten general circulation models, we show that climate change will increase the importance of atmospheric constraints to carbon and water fluxes in all ecosystems. Consequently, atmospheric demand will become increasingly important for vegetation function, accounting for >70% of growing season limitation to surface conductance in mesic temperate forests. Our results suggest that failure to consider the limiting role of atmospheric demand in experimental designs, simulation models and land management strategies will lead to incorrect projections of ecosystem responses to future climate conditions
High prevalence of non-steroidal anti-inflammatory drug use among acute kidney injury survivors in the southern community cohort study
- …
