720 research outputs found

    A direct solver with O(N) complexity for variable coefficient elliptic PDEs discretized via a high-order composite spectral collocation method

    Get PDF
    A numerical method for solving elliptic PDEs with variable coefficients on two-dimensional domains is presented. The method is based on high-order composite spectral approximations and is designed for problems with smooth solutions. The resulting system of linear equations is solved using a direct (as opposed to iterative) solver that has optimal O(N) complexity for all stages of the computation when applied to problems with non-oscillatory solutions such as the Laplace and the Stokes equations. Numerical examples demonstrate that the scheme is capable of computing solutions with relative accuracy of 101010^{-10} or better, even for challenging problems such as highly oscillatory Helmholtz problems and convection-dominated convection diffusion equations. In terms of speed, it is demonstrated that a problem with a non-oscillatory solution that was discretized using 10810^{8} nodes was solved in 115 minutes on a personal work-station with two quad-core 3.3GHz CPUs. Since the solver is direct, and the "solution operator" fits in RAM, any solves beyond the first are very fast. In the example with 10810^{8} unknowns, solves require only 30 seconds.Comment: arXiv admin note: text overlap with arXiv:1302.599

    Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions

    Get PDF
    Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets. This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed—either explicitly or implicitly—to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, robustness, and/or speed. These claims are supported by extensive numerical experiments and a detailed error analysis. The specific benefits of randomized techniques depend on the computational environment. Consider the model problem of finding the k dominant components of the singular value decomposition of an m × n matrix. (i) For a dense input matrix, randomized algorithms require O(mn log(k)) floating-point operations (flops) in contrast to O(mnk) for classical algorithms. (ii) For a sparse input matrix, the flop count matches classical Krylov subspace methods, but the randomized approach is more robust and can easily be reorganized to exploit multiprocessor architectures. (iii) For a matrix that is too large to fit in fast memory, the randomized techniques require only a constant number of passes over the data, as opposed to O(k) passes for classical algorithms. In fact, it is sometimes possible to perform matrix approximation with a single pass over the data

    Strong, Bold, and Kind: Self-Control and Cooperation in Social Dilemmas

    Get PDF
    We develop a model relating self-control, risk preferences and conflict identification to cooperation patterns in social dilemmas. We subject our model to data from an experimental public goods game and a risk experiment, and we measure conflict identification and self-control. As predicted, we find a robust association between self-control and higher levels of cooperation, and the association is weaker for more risk-averse individuals. Free riders differ from other contributor types only in their tendency not to have identified a self-control conflict in the first place. Our model accounts for the data at least as well as do other models
    corecore