32 research outputs found

    Toxic effect in the lungs of rats after inhalation exposure to benzalkonium chloride

    Full text link
    Background: Benzalkonium chloride (BAC) is a quaternary ammonium compound (QAC) toxic to microorganisms. Inhalation is one of the major possible routes of human exposure to BAC. Materials and Methods: Experiments were performed on female Wistar rats. The rats were exposed to aerosol of BAC water solution at the target concentration of 0 (control group) and 35 mg/m3 for 5 days (6 h/day) and, after a 2-week interval, the animals were challenged (day 21) with BAC aerosol at the target concentration of 0 (control group) and 35 mg/m3 for 6 h. Results: Compared to the controls, the animals exposed to BAC aerosol were characterized by lower food intake and their body weight was significantly smaller. As regards BAC-exposed group, a significant increase was noted in relative lung mass, total protein concentration, and MIP-2 in BALF both directly after the termination of the exposure and 18 h afterwards. Significantly higher IL-6 and IgE concentrations in BALF and a decrease in the CC16 concentration in BALF were found in the exposed group immediately after the exposure. The leukocyte count in BALF was significantly higher in the animals exposed to BAC aerosol compared to the controls. In the lungs of rats exposed to BAC the following effects were observed: minimal perivascular, interstitial edema, focal aggregates of alveolar macrophages, interstitial mononuclear cell infiltrations, thickened alveolar septa and marginal lipoproteinosis. Conclusion: Inhalation of BAC induced a strong inflammatory response and a damage to the blood-air barrier. Reduced concentrations of CC16, which is an immunosuppressive and anti-inflammatory protein, in combination with increased IgE concentrations in BALF may be indicative of the immuno-inflammatory response in the animals exposed to BAC aerosol by inhalation. Histopathological examinations of tissue samples from the BAC-exposed rats revealed a number of pathological changes found only in the lungs

    Receptor-mediated endocytosis of galactose and mannose exposing ligands: an elctron microscopic study on adult and neonatal cultured rat hepatocytes

    No full text
    We compared the receptor-mediated endocytosis for galactose and mannose exposing ligands in primary cultures of hepatocytes from newborn and adult rats. The endocytic pathway was revealed ultrastructurally using colloidal gold particles coupled to lactosylated bovine serum albumin and invertase. The binding activity on the cell surfaces is observed by keeping the cells at 4 degrees C. For both ligands used, the binding capacity for hepatocytes from adult rats was greater than for neonatal cultured cells. Increasing the temperature to 37 degrees C, we observed that the protein-gold complexes entered the intracellular endocytic organelles. Within 5-15 min, the marker was confined in vesicles close to the cell surface and in the endosome, while after 60 min, the marker is found in lysosome-like compartments. We found that the process of endocytosis is similar for galactose and mannose exposing ligands. The organelles involved in the process of endocytosis in newborn cultured hepatocytes are not different in shape from those of cultured cells of adult rats, but the process of internalization is slowe

    Receptor-mediated endocytosis of galactose and mannose exposing ligands: an electron microscopic study on adult and neonatal cultured rat hepatocytes.

    No full text
    We compared the receptor-mediated endocytosis for galactose and mannose exposing ligands in primary cultures of hepatocytes from newborn and adult rats. The endocytic pathway was revealed ultrastructurally using colloidal gold particles coupled to lactosylated bovine serum albumin and invertase. The binding activity on the cell surfaces is observed by keeping the cells at 4 degrees C. For both ligands used, the binding capacity for hepatocytes from adult rats was greater than for neonatal cultured cells. Increasing the temperature to 37 degrees C, we observed that the protein-gold complexes entered the intracellular endocytic organelles. Within 5-15 min, the marker was confined in vesicles close to the cell surface and in the endosome, while after 60 min, the marker is found in lysosome-like compartments. We found that the process of endocytosis is similar for galactose and mannose exposing ligands. The organelles involved in the process of endocytosis in newborn cultured hepatocytes are not different in shape from those of cultured cells of adult rats, but the process of internalization is slowe
    corecore