3 research outputs found

    The on-site analysis of the cherenkov telescope array

    No full text
    The Cherenkov Telescope Array (CTA) observatory will be one of the largest ground-based veryhigh- energy gamma-ray observatories. The On-Site Analysis will be the first CTA scientific analysis of data acquired from the array of telescopes, in both northern and southern sites. The On-Site Analysis will have two pipelines: the Level-A pipeline (also known as Real-Time Analysis, RTA) and the level-B one. The RTA performs data quality monitoring and must be able to issue automated alerts on variable and transient astrophysical sources within 30 seconds from the last acquired Cherenkov event that contributes to the alert, with a sensitivity not worse than the one achieved by the final pipeline by more than a factor of 3. The Level-B Analysis has a better sensitivity (not be worse than the final one by a factor of 2) and the results should be available within 10 hours from the acquisition of the data: for this reason this analysis could be performed at the end of an observation or next morning. The latency (in particular for the RTA) and the sensitivity requirements are challenging because of the large data rate, a few GByte/s. The remote connection to the CTA candidate site with a rather limited network bandwidth makes the issue of the exported data size extremely critical and prevents any kind of processing in real-time of the data outside the site of the telescopes. For these reasons the analysis will be performed on-site with infrastructures co-located with the telescopes, with limited electrical power availability and with a reduced possibility of human intervention. This means, for example, that the on-site hardware infrastructure should have low-power consumption. A substantial effort towards the optimization of high-throughput computing service is envisioned to provide hardware and software solutions with high-throughput, low-power consumption at a low-cost. This contribution provides a summary of the design of the on-site analysis and reports some prototyping activities

    The on-site analysis of the cherenkov telescope array

    Get PDF
    The Cherenkov Telescope Array (CTA) observatory will be one of the largest ground-based veryhigh- energy gamma-ray observatories. The On-Site Analysis will be the first CTA scientific analysis of data acquired from the array of telescopes, in both northern and southern sites. The On-Site Analysis will have two pipelines: the Level-A pipeline (also known as Real-Time Analysis, RTA) and the level-B one. The RTA performs data quality monitoring and must be able to issue automated alerts on variable and transient astrophysical sources within 30 seconds from the last acquired Cherenkov event that contributes to the alert, with a sensitivity not worse than the one achieved by the final pipeline by more than a factor of 3. The Level-B Analysis has a better sensitivity (not be worse than the final one by a factor of 2) and the results should be available within 10 hours from the acquisition of the data: for this reason this analysis could be performed at the end of an observation or next morning. The latency (in particular for the RTA) and the sensitivity requirements are challenging because of the large data rate, a few GByte/s. The remote connection to the CTA candidate site with a rather limited network bandwidth makes the issue of the exported data size extremely critical and prevents any kind of processing in real-time of the data outside the site of the telescopes. For these reasons the analysis will be performed on-site with infrastructures co-located with the telescopes, with limited electrical power availability and with a reduced possibility of human intervention. This means, for example, that the on-site hardware infrastructure should have low-power consumption. A substantial effort towards the optimization of high-throughput computing service is envisioned to provide hardware and software solutions with high-throughput, low-power consumption at a low-cost. This contribution provides a summary of the design of the on-site analysis and reports some prototyping activities

    A chemical survey of exoplanets with ARIEL

    No full text
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives
    corecore