12 research outputs found

    Sites of persistence of Fusobacterium necrophorum and Dichelobacter nodosus: a paradigm shift in understanding the epidemiology of footrot in sheep

    Get PDF
    Sites of persistence of bacterial pathogens contribute to disease dynamics of bacterial diseases. Footrot is a globally important bacterial disease that reduces health and productivity of sheep. It is caused by Dichelobacter nodosus, a pathogen apparently highly specialised for feet, while Fusobacterium necrophorum, a secondary pathogen in footrot is reportedly ubiquitous on pasture. Two prospective longitudinal studies were conducted to investigate the persistence of D. nodosus and F. necrophorum in sheep feet, mouths and faeces, and in soil. Molecular tools were used to detect species, strains and communities. In contrast to the existing paradigm, F. necrophorum persisted on footrot diseased feet, and in mouths and faeces; different strains were detected in feet and mouths. D. nodosus persisted in soil and on diseased, but not healthy, feet; similar strains were detected on both healthy and diseased feet of diseased sheep. We conclude that D. nodosus and F. necrophorum depend on sheep for persistence but use different strategies to persist and spread between sheep within and between flocks. Elimination of F. necrophorum would be challenging due to faecal shedding. In contrast D. nodosus could be eliminated if all footrot-affected sheep were removed and fade out of D. nodosus occurred in the environment before re-infection of a foot

    Metabolic Investigation of the Mycoplasmas from the Swine Respiratory Tract

    Get PDF
    International audienceBackgroundThe respiratory tract of swine is colonized by several bacteria among which are three Mycoplasma species: Mycoplasma flocculare, Mycoplasma hyopneumoniae and Mycoplasma hyorhinis. While colonization by M. flocculare is virtually asymptomatic, M. hyopneumoniae is the causative agent of enzootic pneumonia and M. hyorhinis is present in cases of pneumonia, polyserositis and arthritis. The genomic resemblance among these three Mycoplasma species combined with their different levels of pathogenicity is an indication that they have unknown mechanisms of virulence and differential expression, as for most mycoplasmas.MethodsIn this work, we performed whole-genome metabolic network reconstructions for these three mycoplasmas. Cultivation tests and metabolomic experiments through nuclear magnetic resonance spectroscopy (NMR) were also performed to acquire experimental data and further refine the models reconstructed in silico.ResultsEven though the refined models have similar metabolic capabilities, interesting differences include a wider range of carbohydrate uptake in M. hyorhinis, which in turn may also explain why this species is a widely contaminant in cell cultures. In addition, the myo-inositol catabolism is exclusive to M. hyopneumoniae and may be an important trait for virulence. However, the most important difference seems to be related to glycerol conversion to dihydroxyacetone-phosphate, which produces toxic hydrogen peroxide. This activity, missing only in M. flocculare, may be directly involved in cytotoxicity, as already described for two lung pathogenic mycoplasmas, namely Mycoplasma pneumoniae in human and Mycoplasma mycoides subsp. mycoides in ruminants. Metabolomic data suggest that even though these mycoplasmas are extremely similar in terms of genome and metabolism, distinct products and reaction rates may be the result of differential expression throughout the species.ConclusionsWe were able to infer from the reconstructed networks that the lack of pathogenicity of M. flocculare if compared to the highly pathogenic M. hyopneumoniae may be related to its incapacity to produce cytotoxic hydrogen peroxide. Moreover, the ability of M. hyorhinis to grow in diverse sites and even in different hosts may be a reflection of its enhanced and wider carbohydrate uptake. Altogether, the metabolic differences highlighted in silico and in vitro provide important insights to the different levels of pathogenicity observed in each of the studied species

    The fallow period plays an important role in annual CH4 emission in a rice paddy in southern Brazil.

    Get PDF
    Paddy fields are significant anthropogenic sources of methane (CH4) emissions. In southern Brazil, rice is grown in lowland flooded areas once a year, followed by a long fallow period. This study aimed to measure CH4 fluxes in a rice paddy field in southern Brazil during the rice-growing season of 2015/2016 and the following fallow period. The fluxes were estimated using the eddy covariance (EC) technique and soil chamber (SC). Diurnal and seasonal variations of CH4 fluxes and potential meteorological drivers were analyzed. The CH4 fluxes showed distinct diurnal variations in each analyzed subperiod (vegetative, reproductive, pre-harvest, no rice, and land preparation), characterized by a single-peak diurnal pattern. The variables that most influenced methane emissions were air and surface temperatures. In the growing season, the rice vegetative stage was responsible for most of the measured emissions. The accumulated annual emission estimated was 44.88 g CH4 m?2 y?1, being 64% (28.50 g CH4 m?2) due to the rice-growing season and 36% (16.38 g CH4 m?2) due to the fallow period. These results show the importance of including fallow periods in strategies to mitigate methane emissions in flood irrigated rice-growing areas

    Antimicrobial usage and resistance in beef production

    Full text link
    corecore