282 research outputs found
Observations of cosmic ray electrons between 2.7 and 21.5 MeV
Intensity of 2.7 to 21.5 MeV electrons in interplanetary space from Explorer 34 measurement
The starting conditions for an optically small solar gamma ray flare
It is suggested that optically small gamma-ray flares result from gradual pre-flare acceleration of protons over approximately 1,000 s by a series of magnetohydrodynamic shocks in the low corona. A fraction of the accelerated protons are trapped in the corona where they form a seed population for future acceleration. If the shock acceleration is sufficiently rapid proton energies may exceed the gamma-ray production threshold and trigger gamma-ray emission. This occurs without the total flare energy being necessarily large. Magnetic field geometry is an important parameter
Spectral and spatial properties of solar microflares
Solar microflares are studied using both hard ( 28 keV) and soft (3.5 to 8.0 keV) X-ray observations. The soft X-ray events have durations 3 m at 0.1x maximum intensity, and typically have similar rise and decay times. The fastest decay observed was 15 s (1/e). Soft and hard X-ray intensities are uncorrelated. The events are very compact, consistent with a projected area approximately 8 x 8 inches. They are normally not associated with H alpha or type 3 emissions and their time profiles suggest a thermal origin at the top of the chromosphere. If the primary energy release site is in the corona, an energy transfer agent consistent with the observations is a non-thermal proton beam
Electronics implementation of the solar neutron experiment
The electronic equipment design and function are discussed for the solar neutron counter experiment. Circuit diagrams are included
A large area detector for neutrons between 2 and 100 MeV
A neutron detector sensitive from 2 to 100 MeV is described. The detector is designed for high altitude balloon flight to measure the flux, energy and direction of albedo neutrons from the earth and to search for solar neutrons. A neutron scatter from a proton is required in each of two liquid scintillator tanks spaced 1 meter apart. The energy of the recoil proton in the first tank is obtained from pulse height analysis of the scintillator output. The energy of the recoil neutron is obtained from its time of flight between the tanks. The detector has been calibrated with 15.3 MeV neutrons and mu mesons. The minimum detectable flux is 10(-4) neutron/sq cm/sec at a counting rate of one per minute; the energy resolution is 12% at 15 MeV and 30% at 100 MeV. The angle between the incoming neutron and the recoil neutron is measured to + or - 10 deg
Flare energetics
In this investigation of flare energetics, researchers sought to establish a comprehensive and self-consistent picture of the sources and transport of energy within a flare. To achieve this goal, they chose five flares in 1980 that were well observed with instruments on the Solar Maximum Mission, and with other space-borne and ground-based instruments. The events were chosen to represent various types of flares. Details of the observations available for them and the corresponding physical parameters derived from these data are presented. The flares were studied from two perspectives, the impulsive and gradual phases, and then the results were compared to obtain the overall picture of the energics of these flares. The role that modeling can play in estimating the total energy of a flare when the observationally determined parameters are used as the input to a numerical model is discussed. Finally, a critique of the current understanding of flare energetics and the methods used to determine various energetics terms is outlined, and possible future directions of research in this area are suggested
Survey on solar X-ray flares and associated coherent radio emissions
The radio emission during 201 X-ray selected solar flares was surveyed from
100 MHz to 4 GHz with the Phoenix-2 spectrometer of ETH Zurich. The selection
includes all RHESSI flares larger than C5.0 jointly observed from launch until
June 30, 2003. Detailed association rates of radio emission during X-ray flares
are reported. In the decimeter wavelength range, type III bursts and the
genuinely decimetric emissions (pulsations, continua, and narrowband spikes)
were found equally frequently. Both occur predominantly in the peak phase of
hard X-ray (HXR) emission, but are less in tune with HXRs than the
high-frequency continuum exceeding 4 GHz, attributed to gyrosynchrotron
radiation. In 10% of the HXR flares, an intense radiation of the above genuine
decimetric types followed in the decay phase or later. Classic meter-wave type
III bursts are associated in 33% of all HXR flares, but only in 4% they are the
exclusive radio emission. Noise storms were the only radio emission in 5% of
the HXR flares, some of them with extended duration. Despite the spatial
association (same active region), the noise storm variations are found to be
only loosely correlated in time with the X-ray flux. In a surprising 17% of the
HXR flares, no coherent radio emission was found in the extremely broad band
surveyed. The association but loose correlation between HXR and coherent radio
emission is interpreted by multiple reconnection sites connected by common
field lines.Comment: Solar Physics, in pres
Plasmoid-Induced-Reconnection and Fractal Reconnection
As a key to undertanding the basic mechanism for fast reconnection in solar
flares, plasmoid-induced-reconnection and fractal reconnection are proposed and
examined. We first briefly summarize recent solar observations that give us
hints on the role of plasmoid (flux rope) ejections in flare energy release. We
then discuss the plasmoid-induced-reconnection model, which is an extention of
the classical two-ribbon-flare model which we refer to as the CSHKP model. An
essential ingredient of the new model is the formation and ejection of a
plasmoid which play an essential role in the storage of magnetic energy (by
inhibiting reconnection) and the induction of a strong inflow into reconnection
region. Using a simple analytical model, we show that the plasmoid ejection and
acceleration are closely coupled with the reconnection process, leading to a
nonlinear instability for the whole dynamics that determines the macroscopic
reconnection rate uniquely. Next we show that the current sheet tends to have a
fractal structure via the following process path: tearing, sheet thinning,
Sweet- Parker sheet, secondary tearing, further sheet thinning... These
processes occur repeatedly at smaller scales until a microscopic plasma scale
(either the ion Larmor radius or the ion inertial length) is reached where
anomalous resistivity or collisionless reconnection can occur. The current
sheet eventually has a fractal structure with many plasmoids (magnetic islands)
of different sizes. When these plasmoids are ejected out of the current sheets,
fast reconnection occurs at various different scales in a highly time dependent
manner. Finally, a scenario is presented for fast reconnection in the solar
corona on the basis of above plasmoid-induced-reconnection in a fractal current
sheet.Comment: 9 pages, 11 figures, with using eps.sty; Earth, Planets and Space in
press; ps-file is also available at
http://stesun8.stelab.nagoya-u.ac.jp/~tanuma/study/shibata2001
- …
