5,404 research outputs found

    DNA unzipping and the unbinding of directed polymers in a random media

    Full text link
    We consider the unbinding of a directed polymer in a random media from a wall in d=1+1d=1+1 dimensions and a simple one-dimensional model for DNA unzipping. Using the replica trick we show that the restricted partition functions of these problems are {\em identical} up to an overall normalization factor. Our finding gives an example of a generalization of the stochastic matrix form decomposition to disordered systems; a method which effectively allows to reduce dimensionality of the problem. The equivalence between the two problems, for example, allows us to derive the probability distribution for finding the directed polymer a distance zz from the wall. We discuss implications of these results for the related Kardar-Parisi-Zhang equation and the asymmetric exclusion process.Comment: 5 pages, 2 figures, minor modifications, added discussion on stochastic matrix form decompositio

    Boundary-induced phase transitions in traffic flow

    Full text link
    Boundary-induced phase transitions are one of the surprising phenomena appearing in nonequilibrium systems. These transitions have been found in driven systems, especially the asymmetric simple exclusion process. However, so far no direct observations of this phenomenon in real systems exists. Here we present evidence for the appearance of such a nonequilibrium phase transition in traffic flow occurring on highways in the vicinity of on- and off-ramps. Measurements on a German motorway close to Cologne show a first-order nonequilibrium phase transition between a free-flow phase and a congested phase. It is induced by the interplay of density waves (caused by an on-ramp) and a shock wave moving on the motorway. The full phase diagram, including the effect of off-ramps, is explored using computer simulations and suggests means to optimize the capacity of a traffic network.Comment: 5 figures, revte

    Duality and exact correlations for a model of heat conduction

    Get PDF
    We study a model of heat conduction with stochastic diffusion of energy. We obtain a dual particle process which describes the evolution of all the correlation functions. An exact expression for the covariance of the energy exhibits long-range correlations in the presence of a current. We discuss the formal connection of this model with the simple symmetric exclusion process.Comment: 19 page

    Transport on a Lattice with Dynamical Defects

    Get PDF
    Many transport processes in nature take place on substrates, often considered as unidimensional lanes. These unidimensional substrates are typically non-static: affected by a fluctuating environment, they can undergo conformational changes. This is particularly true in biological cells, where the state of the substrate is often coupled to the active motion of macromolecular complexes, such as motor proteins on microtubules or ribosomes on mRNAs, causing new interesting phenomena. Inspired by biological processes such as protein synthesis by ribosomes and motor protein transport, we introduce the concept of localized dynamical sites coupled to a driven lattice gas dynamics. We investigate the phenomenology of transport in the presence of dynamical defects and find a novel regime characterized by an intermittent current and subject to severe finite-size effects. Our results demonstrate the impact of the regulatory role of the dynamical defects in transport, not only in biology but also in more general contexts

    Removing non-stationary, non-harmonic external interference from gravitational wave interferometer data

    Get PDF
    We describe a procedure to identify and remove a class of non-stationary and non-harmonic interference lines from gravitational wave interferometer data. These lines appear to be associated with the external electricity main supply, but their amplitudes are non-stationary and they do not appear at harmonics of the fundamental supply frequency. We find an empirical model able to represent coherently all the non-harmonic lines we have found in the power spectrum, in terms of an assumed reference signal of the primary supply input signal. If this signal is not available then it can be reconstructed from the same data by making use of the coherent line removal algorithm that we have described elsewhere. All these lines are broadened by frequency changes of the supply signal, and they corrupt significant frequency ranges of the power spectrum. The physical process that generates this interference is so far unknown, but it is highly non-linear and non-stationary. Using our model, we cancel the interference in the time domain by an adaptive procedure that should work regardless of the source of the primary interference. We have applied the method to laser interferometer data from the Glasgow prototype detector, where all the features we describe in this paper were observed. The algorithm has been tuned in such a way that the entire series of wide lines corresponding to the electrical interference are removed, leaving the spectrum clean enough to detect signals previously masked by them. Single-line signals buried in the interference can be recovered with at least 75 % of their original signal amplitude.Comment: 14 pages, 5 figures, Revtex, psfi

    Topological Reverberations in Flat Space-times

    Get PDF
    We study the role played by multiply-connectedness in the time evolution of the energy E(t) of a radiating system that lies in static flat space-time manifolds M_4 whose t=const spacelike sections M_3 are compact in at least one spatial direction. The radiation reaction equation of the radiating source is derived for the case where M_3 has any non-trivial flat topology, and an exact solution is obtained. We also show that when the spacelike sections are multiply-connected flat 3-manifolds the energy E(t) exhibits a reverberation pattern with discontinuities in the derivative of E(t) and a set of relative minima and maxima, followed by a growth of E(t). It emerges from this result that the compactness in at least one spatial direction of Minkowski space-time is sufficient to induce this type of topological reverberation, making clear that our radiating system is topologically fragile. An explicit solution of the radiation reaction equation for the case where M_3 = R^2 x S^1 is discussed, and graphs which reveal how the energy varies with the time are presented and analyzed.Comment: 16 pages, 4 figures, REVTEX; Added five references and inserted clarifying details. Version to appear in Int. J. Mod. Phys. A (2000

    Lagrangian perfect fluids and black hole mechanics

    Get PDF
    The first law of black hole mechanics (in the form derived by Wald), is expressed in terms of integrals over surfaces, at the horizon and spatial infinity, of a stationary, axisymmetric black hole, in a diffeomorphism invariant Lagrangian theory of gravity. The original statement of the first law given by Bardeen, Carter and Hawking for an Einstein-perfect fluid system contained, in addition, volume integrals of the fluid fields, over a spacelike slice stretching between these two surfaces. When applied to the Einstein-perfect fluid system, however, Wald's methods yield restricted results. The reason is that the fluid fields in the Lagrangian of a gravitating perfect fluid are typically nonstationary. We therefore first derive a first law-like relation for an arbitrary Lagrangian metric theory of gravity coupled to arbitrary Lagrangian matter fields, requiring only that the metric field be stationary. This relation includes a volume integral of matter fields over a spacelike slice between the black hole horizon and spatial infinity, and reduces to the first law originally derived by Bardeen, Carter and Hawking when the theory is general relativity coupled to a perfect fluid. We also consider a specific Lagrangian formulation for an isentropic perfect fluid given by Carter, and directly apply Wald's analysis. The resulting first law contains only surface integrals at the black hole horizon and spatial infinity, but this relation is much more restrictive in its allowed fluid configurations and perturbations than that given by Bardeen, Carter and Hawking. In the Appendix, we use the symplectic structure of the Einstein-perfect fluid system to derive a conserved current for perturbations of this system: this current reduces to one derived ab initio for this system by Chandrasekhar and Ferrari.Comment: 26 pages LaTeX-2

    Angular Resolution of the LISA Gravitational Wave Detector

    Get PDF
    We calculate the angular resolution of the planned LISA detector, a space-based laser interferometer for measuring low-frequency gravitational waves from galactic and extragalactic sources. LISA is not a pointed instrument; it is an all-sky monitor with a quadrupolar beam pattern. LISA will measure simultaneously both polarization components of incoming gravitational waves, so the data will consist of two time series. All physical properties of the source, including its position, must be extracted from these time series. LISA's angular resolution is therefore not a fixed quantity, but rather depends on the type of signal and on how much other information must be extracted. Information about the source position will be encoded in the measured signal in three ways: 1) through the relative amplitudes and phases of the two polarization components, 2) through the periodic Doppler shift imposed on the signal by the detector's motion around the Sun, and 3) through the further modulation of the signal caused by the detector's time-varying orientation. We derive the basic formulae required to calculate the LISA's angular resolution ΔΩS\Delta \Omega_S for a given source. We then evaluate ΔΩS\Delta \Omega_S for two sources of particular interest: monchromatic sources and mergers of supermassive black holes. For these two types of sources, we calculate (in the high signal-to-noise approximation) the full variance-covariance matrix, which gives the accuracy to which all source parameters can be measured. Since our results on LISA's angular resolution depend mainly on gross features of the detector geometry, orbit, and noise curve, we expect these results to be fairly insensitive to modest changes in detector design that may occur between now and launch. We also expect that our calculations could be easily modified to apply to a modified design.Comment: 15 pages, 5 figures, RevTex 3.0 fil

    EQUIVALENCES BETWEEN STOCHASTIC SYSTEMS

    Full text link
    Time-dependent correlation functions of (unstable) particles undergoing biased or unbiased diffusion, coagulation and annihilation are calculated. This is achieved by similarity transformations between different stochastic models and between stochastic and soluble {\em non-stochastic} models. The results agree with experiments on one-dimensional annihilation-coagulation processes.Comment: 15 pages, Latex. Some corrections made and an appendix adde

    GravEn: Software for the simulation of gravitational wave detector network response

    Full text link
    Physically motivated gravitational wave signals are needed in order to study the behaviour and efficacy of different data analysis methods seeking their detection. GravEn, short for Gravitational-wave Engine, is a MATLAB software package that simulates the sampled response of a gravitational wave detector to incident gravitational waves. Incident waves can be specified in a data file or chosen from among a group of pre-programmed types commonly used for establishing the detection efficiency of analysis methods used for LIGO data analysis. Every aspect of a desired signal can be specified, such as start time of the simulation (including inter-sample start times), wave amplitude, source orientation to line of sight, location of the source in the sky, etc. Supported interferometric detectors include LIGO, GEO, Virgo and TAMA.Comment: 10 Pages, 3 Figures, Presented at the 10th Gravitational Wave Data Analysis Workshop (GWDAW-10), 14-17 December 2005 at the University of Texas, Brownsvill
    • …
    corecore