27 research outputs found

    The Savvidy ``ferromagnetic vacuum'' in three-dimensional lattice gauge theory

    Full text link
    The vacuum effective potential of three-dimensional SU(2) lattice gauge theory in an applied color-magnetic field is computed over a wide range of field strengths. The background field is induced by an external current, as in continuum field theory. Scaling and finite volume effects are analyzed systematically. The first evidence from lattice simulations is obtained of the existence of a nontrivial minimum in the effective potential. This supports a ``ferromagnetic'' picture of gluon condensation, proposed by Savvidy on the basis of a one-loop calculation in (3+1)-dimensional QCD.Comment: 9pp (REVTEX manuscript). Postscript figures appende

    Formation of clusters in the ground state of the tJt-J model on a two leg ladder

    Full text link
    We investigate the ground state properties of the tJt-J model on a two leg ladder with anisotropic couplings (t,α=J/tt,\alpha=J/t) along rungs and (t,α=J/tt',\alpha'=J'/t') along legs. We have implemented a cluster approach based on 4-site plaqettes. In the strong asymmetric cases α/α1\alpha/\alpha'\ll 1 and α/α1\alpha'/\alpha\ll 1 the ground state energy is well described by plaquette clusters with charges Q=2,4Q=2,4. The interaction between the clusters favours the condensation of plaquettes with maximal charge -- a signal for phase separation. The dominance of Q=2 plaquettes explains the emergence of tightly bound hole pairs. We have presented the numerical results of exact diagonalization to support our cluster approach.Comment: 11 pages, 9 figures, RevTex

    Finite Size Analysis of the Structure Factors in the Antiferromagnetic XXZ Model

    Full text link
    We perform a finite size analysis of the longitudinal and transverse structure factors Sj(p,γ,N),j=1,3S_j(p,\gamma,N),j=1,3 in the groundstate of the spin-12\frac{1}{2} XXZ model. Comparison with the exact results of Tonegawa for the XX model yields excellent agreement. Comparison with the conjecture of M\"uller, Thomas, Puga and Beck reveals discrepancies in the momentum dependence of the longitudinal structure factors.Comment: 9 pages RevTex 3.0 and 17 figures as uuencoded fil

    Real space renormalization group approach to the 2d antiferromagnetic Heisenberg model

    Full text link
    The low energy behaviour of the 2d antiferromagnetic Heisenberg model is studied in the sector with total spins S=0,1,2S=0,1,2 by means of a renormalization group procedure, which generates a recursion formula for the interaction matrix ΔS(n+1)\Delta_S^{(n+1)} of 4 neighbouring "nn clusters" of size 2n×2n2^n\times 2^n, n=1,2,3,...n=1,2,3,... from the corresponding quantities ΔS(n)\Delta_S^{(n)}. Conservation of total spin SS is implemented explicitly and plays an important role. It is shown, how the ground state energies ES(n+1)E_S^{(n+1)}, S=0,1,2S=0,1,2 approach each other for increasing nn, i.e. system size. The most relevant couplings in the interaction matrices are generated by the transitions between the ground states S,m;n+1>|S,m;n+1> (m=S,...,Sm=-S,...,S) on an (n+1)(n+1)-cluster of size 2n+1×2n+12^{n+1}\times 2^{n+1}, mediated by the staggered spin operator SqS_q^*Comment: 18 pages, 8 figures, RevTe

    Two-spinon dynamic structure factor of the one-dimensional S=1/2 Heisenberg antiferromagnet

    Get PDF
    The exact expression derived by Bougourzi, Couture, and Kacir for the 2-spinon contribution to the dynamic spin structure factor Szz(q,ω)S_{zz}(q,\omega) of he one-dimensional SS=1/2 Heisenberg antiferromagnet at T=0T=0 is evaluated for direct comparison with finite-chain transition rates (N28N\leq 28) and an approximate analytical result previously inferred from finite-NN data, sum rules, and Bethe-ansatz calculations. The 2-spinon excitations account for 72.89% of the total intensity in Szz(q,ω)S_{zz}(q,\omega). The singularity structure of the exact result is determined analytically and its spectral-weight distribution evaluated numerically over the entire range of the 2-spinon continuum. The leading singularities of the frequency-dependent spin autocorrelation function, static spin structure factor, and qq-dependent susceptibility are determined via sum rules.Comment: 6 pages (RevTex) and 5 figures (Postscript

    The spin dependence of high energy proton scattering

    Get PDF
    Motivated by the need for an absolute polarimeter to determine the beam polarization for the forthcoming RHIC spin program, we study the spin dependence of the proton-proton elastic scattering amplitudes at high energy and small momentum transfer.We examine experimental evidence for the existence of an asymptotic part of the helicity-flip amplitude phi_5 which is not negligible relative to the largely imaginary average non-flip amplitude phi_+. We discuss theoretical estimates of r_5, essentially the ratio of phi_5 to phi_+, based upon extrapolation of low and medium energy Regge phenomenological results to high energies, models based on a hybrid of perturbative QCD and non-relativistic quark models, and models based on eikonalization techniques. We also apply the model-independent methods of analyticity and unitarity.The preponderence of evidence at available energy indicates that r_5 is small, probably less than 10%. The best available experimental limit comes from Fermilab E704:those data indicate that |r_5|<15%. These bounds are important because rigorous methods allow much larger values. In contradiction to a widely-held prejudice that r_5 decreases with energy, general principles allow it to grow as fast as ln(s) asymptotically, and some models show an even faster growth in the RHIC range. One needs a more precise measurement of r_5 or to bound it to be smaller than 5% in order to use the classical Coulomb-nuclear interference technique for RHIC polarimetry. As part of this study, we demonstrate the surprising result that proton-proton elastic scattering is self-analysing, in the sense that all the helicity amplitudes can, in principle, be determined experimentally at small momentum transfer without a knowledge of the magnitude of the beam and target polarization

    Four-dimensional pure compact U(1) gauge theory on a spherical lattice

    Full text link
    We investigate the confinement-Coulomb phase transition in the four-dimensional (4D) pure compact U(1) gauge theory on spherical lattices. The action contains the Wilson coupling beta and the double charge coupling gamma. The lattice is obtained from the 4D surface of the 5D cubic lattice by its radial projection onto a 4D sphere, and made homogeneous by means of appropriate weight factors for individual plaquette contributions to the action. On such lattices the two-state signal, impeding the studies of this theory on toroidal lattices, is absent for gamma le 0. Furthermore, here a consistent finite-size scaling behavior of several bulk observables is found, with the correlation length exponent nu in the range nu = 0.35 - 40. These observables include Fisher zeros, specific-heat and cumulant extrema as well as pseudocritical values of beta at fixed gamma. The most reliable determination of nu by means of the Fisher zeros gives nu = 0.365(8). The phase transition at gamma le 0 is thus very probably of 2nd order and belongs to the universality class of a non-Gaussian fixed point.Comment: 40 pages, LaTeX, 12 figure
    corecore